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1 Numbers, Division and Euclid

People have been using numbers, and operations on them like division, for a very long time for
practical purposes like dividing up the money left by parents for children, or distributing ears of
corn equally to groups of people, and more generally to conduct all sorts of business dealings. It
may be a bit of a surprise that things like calculating divisors of numbers also form the core of
today’s methods ensuring security of computer systems and internet communications. The RSA
cryptosystem that is used extensively for secure communications is based on the assumed difficulty
of calculating divisors of large numbers, so calculating divisors is important even today.

A related and even more basic notion is that of multiples of quantities. A natural way to
compare quantities is to “measure” how many times we need to aggregate the smaller quantity
to obtain the larger quantity. For example, we may be able to compare two unknown lengths by
observing that the larger length can be obtained by “aggregating” the smaller length three times.
This provides a sense of how the two lengths compare without actually knowing the two lengths.

The larger quantity may not always be obtainable from the smaller quantity by aggregating
it an integral number of times. In this scenario, one way to think would be to imagine each of
the two quantities to be made up of smaller (identical) parts such that both the quantities can be
obtained by aggregating these smaller parts an integral number of times. Obviously, we will need a
greater number of these parts for the larger quantity than for the smaller one. For example, when
comparing two weights, one might observe that the larger one can be obtained by aggregating some
weight 7 times whereas the smaller weight can be obtained by aggregating the same weight 5 times.
This provides a basis for comparing the two weights. Of course, in the above scenario, one can also
observe that if we chose even smaller parts to “split” the weights (say a quarter of the first one),
the first weight would be obtained by aggregating this even smaller weight 28 times and the smaller
of the two original weights would be obtained by aggregating this smaller part 20 times, which also
provides us a sense of the relative magnitudes of the two weights. However, using smaller numbers
like 7 and 5 to describe relative magnitudes seems intuitively and practically more appealing than
using larger numbers, like 28 and 20. This leads us to think about what would be the greatest
magnitude such that two given magnitudes will both be multiples of that common magnitude.

This question was considered by Greek mathematicians more than 2000 years ago. One of
those Greeks was Euclid, who compiled a collection of mathematical works called Elements that
has a chapter, called a “Book”, about numbers. During the course of this project you will read a
translation of part of this chapter to discover Euclid’s method (algorithm) to compute the greatest
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common divisor of two numbers. It is not clear if Euclid was the first person to discover this
algorithm, but his is the earliest known written record of it.

1.1 Euclid of Alexandria

Euclid lived around 300 B.C.E. Very little is known about his life. It is generally believed that
he was educated under students of Plato’s Academy in Athens. According to Proclus (410–485
C.E.), Euclid came after the first pupils of Plato and lived during the reign of Ptolemy I (306–283
B.C.E.). It is said that Euclid established a mathematical school in Alexandria. Euclid is best
known for his mathematical compilation Elements [1], perhaps the most influential written work in
the history of mathematics, in which among other things he laid down the foundations of geometry
and number theory. The geometry that we learn in school today traces its roots to this book, and
Euclid is sometimes called the father of geometry.

Euclid did not study mathematics for its potential practical applications or financial gains. He
studied mathematics for a sense of order, structure and the ideal form of reason. To him geometrical
objects and numbers were abstract entities, and he was interested in studying and discovering their
properties. In that sense, he studied mathematics for its own sake. One story that reveals his
disdain for learning for the purpose of material gains concerns a pupil who had just finished his
first geometry lesson. The pupil asked what he would gain from learning geometry. As the story
goes, Euclid asked his subordinate to give the pupil a coin so that he would be gaining from his
studies. Another story that reveals something about his character concerns King Ptolemy. Ptolemy
asked the mathematician if there was an easier way to learn geometry. Euclid replied, “There is no
royal road to geometry”, and sent the king to study.

Euclid wrote several books such as Data, On Divisions of Figures, Phaenomena, Optics, and
the lost books Conics and Porisms, but Elements remains his best known compilation. The first
“Book” [chapter] in this compilation is perhaps the most well-known. It lays down the foundations
of what we today call “Euclidean” geometry (which was the only plane geometry people studied
until the Renaissance). This book has definitions of basic geometric objects like points and lines
along with basic postulates or axioms. These axioms are then used by Euclid to establish many
other truths (Theorems) of geometry. Euclid’s Elements is considered one of the greatest works of
mathematics, partly because it is the earliest we have that embodies an axiomatic approach. It was
translated into Latin and Arabic and influenced mathematics throughout Europe and the Middle
East. It was probably the standard “textbook” for geometry for more than 1500 years in western
Europe and continues to influence the way geometry is taught to this day.

Book 7 of Elements provides foundations for number theory. Euclid’s Algorithm for calculating
the greatest common divisor of two numbers was presented in this book. As one will notice later,
Euclid uses lines to represent numbers and often relies on visual figures to aid the explanation of
his method of computing the greatest common divisor (GCD) of two numbers. As such, he seems
to be relating numbers to geometry, which is quite different from the present day treatment of
number theory.

Today, erroneously, many different methods are called Euclid’s algorithm. By reading the
original writings of Euclid you will discover the real Euclidean algorithm and appreciate its subtlety.
In any case, “Euclid’s Algorithm” is one of the most cited and well-known examples of an (early)
algorithm. To quote Knuth [2]:

By 1950, the word algorithm was mostly associated with “Euclid’s Algorithm”.
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2 Prelude

We say that a number1 x divides another number y if y is a multiple of x. For example, 1, 2, and
3 all divide 6 but 5 does not divide 6. The only divisors of 17 are 1 and 17. The notation x|y is a
shorthand for “x divides y”. We denote by divisors(x) the set of all the numbers y such that y|x.
So, for example2, divisors(6) = {1, 2, 3, 6} and divisors(60) = {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60}.

A number z is called a common divisor of two numbers x and y if z|x and z|y. We denote by
cd(x, y) the set of all common divisors of x and y. For example, cd(6, 8) = {1, 2} and cd(40, 180) =
{1, 2, 4, 5, 10, 20}.

Exercise 2.1. What is the set of divisors of the number 315?

Exercise 2.2. Calculate the set cd(288, 216).

While it is relatively easy to calculate the divisors of a number and common divisors of two
numbers when the numbers are small, the task become harder as the numbers becomes larger.

Exercise 2.3. Calculate divisors(3456).

Exercise 2.4. Calculate cd(3456, 4563).

Exercise 2.5. A rather naive method for computing the divisors of a number x is to test whether
each number from 1 to x inclusive is a divisor of x. For integers n = 1, 2, 3, . . ., x, simply test
whether n divides x. Using this naive algorithm, write a computer program in the language of your
choice that accepts as input a positive integer x and outputs all divisors of x. Run this program
for:

(a) x = 3456,

(b) x = 1009,

(c) x = 1080.

Exercise 2.6. The naive method for computing the common divisors of two numbers x and y is
to test whether each number from 1 to the least of {x, y} divides x and y. In modern notation, let
m denote the minimum (least of) {x, y}. For n = 1, 2, 3, . . ., m, first test whether n divides x,
and, if so, then test whether n divides y. If n divides both x and y, record n as a common divisor.
Using this naive algorithm, write a computer program in the language of your choice that accepts
as input two positive integers x, y, and outputs their common divisors. Run this program for:

(a) x = 3456, y = 4563,

(b) x = 625, y = 288,

(c) x = 216, y = 288,

(d) x = 147, y = 27.

As you might have noticed, the number 1 divides every number. Since there is no number
smaller than 1, 1 is the smallest common divisor for any two numbers x and y. What about
the greatest common divisor? The greatest common divisor of two numbers x and y, denoted by
gcd(x, y), is the largest number z such that z|x and z|y. Finding the greatest common divisor is
not nearly as easy as finding the smallest common divisor.

1The word number in this section means a positive integer. That is what it meant to Euclid.
2The notation {1, 2, 3, 6} denotes the set whose elements are listed inside the braces.
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Exercise 2.7. Prove that for any two numbers x and y, gcd(x, y) always exists.

Exercise 2.8. Prove that if d is a divisor of both x and y, then d is a divisor of x+ y and of x− y.

3 Euclid’s Algorithm

Here we present the translations of (relevant) Definitions, Proposition 1 and Proposition 2 from
Book VII of Euclid’s Elements as translated by Sir Thomas L. Heath [1]. Euclid’s method of
computing the GCD is based on these propositions.

∞∞∞∞∞∞∞∞

BOOK VII of Elements by Euclid

DEFINITIONS.

1. A unit is that by virtue of which each of the things that exist is called one.

2. A number is a multitude composed of units.

3. A number is a part of a number, the less of the greater, when it measures the greater.

4. But parts when it does not measure it.3

5. The greater number is a multiple of the less when it is measured by the less.

6. An even number is that which is divisible into two equal parts.

7. An odd number is that which is not divisible into two equal parts, or that differs by a unit from
an even number.

8. An even-times even number is that which is measured by an even number according to an even
number.

9. An even-times odd number is that which is measured by an even number according to an odd
number.

10. An odd-times odd number is that which is measured by an odd number according to an odd
number.

11. A prime number is that which is measured by a unit alone.4

12. Numbers prime to one another are those which are measured by a unit alone as a common
measure.

13. A composite number is that which is measured by some number.

14. Numbers composite to one another are those which are measured by some number as a common
measure.

3While this definition is not relevant here, what is meant by this definition is quite subtle and the subject of
scholarly mathematical work (see, for example, [3]).

4Reading further work of Euclid, e.g. Proposition 2, it is clear that Euclid meant that a prime number is that
which is measured only by the unit and the number itself.
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∞∞∞∞∞∞∞∞

Exercise 3.1. Discuss how Euclid’s “unit” relates to the number 1. Does Euclid think that 1 is a
number?

Exercise 3.2. What is likely meant when Euclid states that a number “measures” another number?
Express Euclid’s notion of “measures” in modern mathematical notation.

Exercise 3.3. Does the number 4 measure number 72? Does 5 measure 72? Briefly justify your
answer.

Exercise 3.4. In Definition 7, Euclid gives two versions in his definition of what it means to be
an odd number. Prove that these are equivalent.

Exercise 3.5. Euclid never defines what is a “common measure”, but uses that in definition 12
and 14. What is your interpretation of Euclid’s “common measure”?

Exercise 3.6. Find a number (other than the unit) that is a common measure of the numbers 102
and 187. According to Euclid’s definitions, are the numbers 102 and 187 composite to one another?
Why or why not?

Exercise 3.7. According to Euclid’s definitions, are the numbers 21 and 55 composite to one
another? Justify your answer.

We now present Proposition 1 from Euclid’s Book VII. The proposition concerns numbers that
are prime to one another. Notice that Euclid represents numbers as lengths of line segments.

∞∞∞∞∞∞∞∞

PROPOSITION 1.

Two unequal numbers being set out, and the less being continually subtracted in turn from the
greater, if the number which is left never measures the one before it until a unit is left, the original
numbers will be prime to one another.

For, the less of two unequal numbers AB, CD being continually subtracted from the greater, let
the number which is left never measure the one before it until a unit is left;

I say that AB, CD are prime to one another, that is, that a unit alone measures AB, CD.

For, if AB, CD are not prime to one another, some number will measure them.

Let a number measure them, and let it be E; let CD, measuring BI, leave IA less than itself, let,
AI measuring DG, leave GC less than itself, and let GC, measuring IH, leave a unit HA.

Since, then, E measures CD, and CD measures BI, therefore E also measures BI.

But it also measures the whole BA; therefore it will also measure the remainder AI.

But AI measures DG; therefore E also measures DG.
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But it also measures the whole DC; therefore it will also measure the remainder CG.

But CG measures IH; therefore E also measures IH.

But it also measures the whole IA; therefore it will also measure the remainder, the unit AH,
though it is a number: which is impossible.

Therefore no number will measure the numbers AB, CD; therefore AB, CD are prime to one
another. [VII. Def 12]

Q. E. D.

∞∞∞∞∞∞∞∞

Exercise 3.8. Euclid begins with two unequal numbers AB, CD, and continually subtracts the
smaller in turn from the greater. Let’s examine how this method proceeds “in turn” when sub-
traction yields a new number that is smaller than the one subtracted. Begin with AB = 162 and
CD = 31.

(a) How many times must CD be subtracted from AB until a remainder is left that is less than
CD? Let this remainder be denoted as IA.

(b) Write AB = BI + IA numerically using the given value for AB and the computed value for
IA.

(c) How many times must IA be subtracted from CD until a remainder is left that is less than
IA? Let this remainder be denoted as GC.

(d) Write CD = DG+GC numerically using the given value for CD and the computed value for
GC.

(e) How many times must GC be subtracted from IA until a remainder is left that is less than
GC? Let this remainder be denoted as HA.

(f) Is HA a unit?
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(g) Write IA = IH + HA numerically using the computed values of IA and HA.

Exercise 3.9. Apply the procedure outlined in Proposition 1 to the numbers AB = 625 and
CD = 288. Begin by answering questions (a)–(f) above except with the new values for AB and
CD.

(g) In this example, how should the algorithm proceed until a remainder is reached that is a unit?

Exercise 3.10. Euclid claims that if the repeated subtraction algorithm of Proposition 1 eventually
produces a unit as a remainder, then the original numbers AB, CD are prime to one another. He
does so by using a “proof by contradiction”. Suppose the result, namely that AB and CD are
prime to one another, is false. In this exercise we examine the consequences of this.

(a) If AB and CD are not prime to one another, must these numbers have a common measure
E that is greater than 1? Justify your answer by using Euclid’s definitions.

(b) From AB = BI +IA, why must E also measure IA ? Be sure to carefully justify your answer
for general numbers AB and CD (not tied to one particular example).

(c) From CD = DG + GC, why must E also measure GC? Be sure to carefully justify your
answer.

(d) From IA = IH + HA, why must E also measure HA? Carefully justify your answer.

(e) If according to Euclid, HA is a unit, what contradiction has been reached in part (d) ?

We now present Proposition 2 from Book VII of Euclid’s elements. This proposition presents
a method to compute the GCD of two numbers which are not prime to each other and provides a
proof of the correctness of the method. Euclid’s presentation intermixes the proof and the method
to some extent. Despite this the elegance of his method and the proof is striking.

∞∞∞∞∞∞∞∞

PROPOSITION 2.

Given two numbers not prime to one another, to find their greatest common measure.

Let AB, CD be the two given numbers not prime to one another.

Thus it is required to find the greatest common measure of AB, CD.

If now CD measures AB - and it also measures itself - CD is a common measure of CD,AB.

And it is manifest that it is also the greatest; for no greater number than CD will measure CD.

But, if CD does not measure AB, then, the less of the numbers AB, CD being continually sub-
tracted from the greater, some number will be left which will measure the one before it.

For a unit will not be left; otherwise AB, CD will be prime to one another [VII, I], which is contrary
to the hypothesis.
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Therefore some number will be left which will measure the one before it.

Now let CD, measuring BE, leave EA less than itself, let EA, measuring DI, leave IC less than
itself, and let CI measure AE.

Since then, CI measures AE, and AE measures DI, therefore CI will also measure DI.

But it also measures itself; therefore it will also measure the whole CD.

But CD measures BE; therefore CI also measures BE.

But it also measures EA; therefore, it will also measure the whole BA.

But it also measures CD; therefore CI measures AB, CD.

Therefore CI is a common measure of AB, CD.

I say next that it is also the greatest.

For, if CI is not the greatest common measure of AB, CD, some number which is greater than
CI will measure the numbers AB, CD.

Let such a number measure them, and let it be G.

Now, since G measures CD, while CD measures BE, G also measures BE.

But it also measures the whole BA; therefore it will also measure the remainder AE.

But AE measures DI; therefore G will also measure DI.

But it will also measure the whole DC; therefore it will also measure the remainder CI, that is, the
greater will measure the less: which is impossible.
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Therefore no number which is greater than CI will measure the numbers AB, CD; therefore CI is
the greatest common measure of AB, CD.

Porism. From this it is manifest that, if a number measure two numbers, it will also measure their
greatest common measure.

∞∞∞∞∞∞∞∞

Exercise 3.11. In Proposition 2 Euclid describes a procedure to compute the greatest common
measure of two numbers AB, CD, not prime to one another. The method again proceeds by
repeatedly subtracting the smaller in turn from the greater until some number is left, which in this
case divides the number before it. Let’s examine this process for AB = 147 and CD = 27.

(a) Does CD measure AB? If so, the process stops. If not, how many times must CD be
subtracted from AB until a positive remainder is left that is less than CD. Let EA denote
this remainder.

(b) Write AB = BE +EA numerically using the given value for AB and the computed value for
EA. Also find a positive integer q1 so that BE = q1 · CD.

(c) Does EA measure CD? If so, the process stops. If not, how many times must EA be
subtracted from CD until a positive remainder is left that is less than EA. Let IC denote
this remainder.

(d) Write CD = DI + IC numerically using the given value for CD and the computed value for
IC. Also, find a positive integer q2 so that DI = q2 · EA.

(e) Does IC measure EA? If so, the process stops. If not, how many times must IC be subtracted
from EA until a positive remainder is left that is less than IC ?

(f) Find a positive integer q3 so that EA = q3 · IC.

Exercise 3.12. Apply Euclid’s procedure in Proposition 2 to compute the greatest common mea-
sure of AB = 600 and CD = 276 outlined in the steps below.

(a) To streamline the process, let a1 = AB = 600, a2 = CD = 276, and a3 = EA. Compute a3
numerically for this example. Write the equation AB = BE + EA entirely in terms of a1, a2
and a3.

(b) Let a4 = IC. Compute a4 for this example. Write the equation CD = DI + IC entirely in
terms of a2, a3 and a4.

(c) Does IC measure EA in this example? If so, the process stops. If not, how many times must
IC be subtracted from EA until a positive remainder is left that is less than IC? Denote
this remainder by a5.

(d) Write an equation using a3, a4 and a5 that reflects the number of times IC must be subtracted
from EA so that the remainder is a5.

(e) Does a5 measure a4? If so, the process stops. If not, how many times must a5 be subtracted
from a4 until a positive remainder is left that is less than a5?
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Exercise 3.13. The processes examined in the previous exercise should enable you now to prove
what is called the division algorithm: Given two positive integers a and b with b ≤ a, one can
obtain a = qb + r for some positive integer q and some r with 0 ≤ r < b. After you have proved
this, prove also that q and r are unique, i.e., there is only one possibility for q and r satisfying the
required conditions.

Exercise 3.14. In modern notation, the Euclidean algorithm to compute the greatest common
measure of two positive integers a1 and a2 (prime to each other or not) can be written as follows.
Find a sequence of positive integer remainders a3, a4, a5, . . ., an+1 and a sequence of (positive)
integer multipliers q1, q2, q3, . . ., qn so that

a1 = q1a2 + a3, 0 < a3 < a2

a2 = q2a3 + a4, 0 < a4 < a3

a3 = q3a4 + a5, 0 < a5 < a4
...

ai−1 = qi−1ai + ai+1, 0 < ai+1 < ai

ai = qiai+1 + ai+2, 0 < ai+2 < ai+1

...

an−1 = qn−1an + an+1, 0 < an+1 < an

an = qnan+1

(a) Why is an+1 a divisor of an ? Briefly justify your answer.

(b) Why is an+1 a divisor of an−1? Carefully justify your answer.

(c) In a step-by-step argument, use mathematical induction to verify that an+1 is a divisor of ai,
i = n, n− 1, n− 2, . . ., 3, 2, 1.

(d) Why is an+1 a common divisor of a1 and a2?

(e) In a step-by-step argument, use mathematical induction to verify that if G is a divisor of a1
and a2, then G is also a divisor of ai, i = 3, 4, 5, . . ., n + 1. First, carefully explain why G is
a divisor of a3. Then examine the inductive step.

(f) From part (d) we know that an+1 is a common divisor of a1 and a2. Carefully explain how
part (e) can be used to conclude that an+1 is in fact the greatest common divisor of a1 and
a2. A proof by contradiction might be appropriate here, following Euclid’s example.

Exercise 3.15. In Proposition 1 Euclid describes an algorithm whereby, given two unequal num-
bers, the less is continually subtracted in turn from the greater until a unit is left. While in
Proposition 2, Euclid describes an algorithm, whereby, given two unequal numbers, the less is
continually subtracted from the greater until some number is left which measures the one before it.

(a) To what extent are these algorithms identical?

(b) Explain how the algorithms in Proposition 1 and Proposition 2 are designed to differ in what
they tell us about a pair of numbers?
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(c) Does Euclid consider a unit as a number? Justify your answer citing relevant passages from
the work of Euclid. Does Euclid consider a common measure as a number? Again, justify
your answer from the work of Euclid.

(d) Why, in your opinion, does Euclid describe this algorithm using two separate propositions,
when a single description could suffice?

Exercise 3.16. In the modern description of the Euclidean algorithm in Exercise (3.14), the last
equation written is

an = qnan+1 ,

meaning that after n-steps, the algorithm halts and an+1 divides (measures) an. Given any two
positive integers a1 and a2, why must the Euclidean algorithm halt in a finite number of steps?
Carefully justify your answer using the modern version of the algorithm.

Exercise 3.17. Write a computer program in the language of your choice that implements Euclid’s
algorithm for finding the greatest common divisor of two positive integers. The program should
accept as input two positive integers a1, a2, and as output print their greatest common divisor.
Run the program for:

(a) a1 = 3456, a2 = 4563,

(b) a1 = 625, a2 = 288,

(c) a1 = 216, a2 = 288.
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Notes to the Instructor

This project is for students in an introductory computer science or discrete mathematics course. It
is based on Euclid’s original source for the Euclidean algorithm calculating the greatest common
divisor of two numbers.

The project has few formal prerequisites. Euclid does use proof by contradiction, and many
instructors choose this project to follow after a unit on logic and proof techniques, although it could
also be used to introduce proof by contradiction. Additionally, some optional final exercises use
finite mathematical induction to prove formally the correctness of Euclid’s algorithm for calculating
the greatest common divisor. A few other optional exercises rely on some computer programming.
The project can be completed in two to three class weeks.

This project offers several features different from a textbook treatment of the Euclidean algo-
rithm.

First, students will think deeply while interpreting Euclid’s description of the algorithm, chal-
lenged to convert his verbal and quite geometric description into modern formulation and imple-
mentation. This will involve reconciling multiple possible interpretations, including highlighting
the distinction between repeated subtraction and division with remainder. Algebra as practiced
today did not exist in Euclid’s time, and the exercises develop an algebraic enactment of Euclid’s
algorithm.

Second, in the latter part of the project, optional exercises lead students to make a careful
modern proof of the mathematical correctness of the iterative algorithm, going beyond Euclid’s
own argument for why it produces the greatest common divisor.

Euclid’s presentation also naturally sets the stage, if desired, to extend the project by com-
paring and contrasting with a modern day recursive, as opposed to iterative, formulation of the
algorithm, as it is often presented to computer science students. And the highly contrasting proofs
of correctness in these two very different settings can be explored.

The project can be used to provide a first introduction to the notion of “computation method”
or “algorithm” and to explore concepts like iteration and the efficacy of mathematical induction
as a method of proof, thereby covering a number of typical course topics. The project can even be
used to introduce induction.

With this project students can develop their skill at creating proofs in a highly authentic and
motivated context, but just as importantly they can experience the evolution of what is accepted as
a valid proof or a well-described algorithm. Students will learn that the method presented by Euclid
to compute the greatest common divisor and the proof of its correctness that he provided would
not be formally accepted today. Students will also experience, however, that Euclid is somehow
able to convey the ideas behind his method and proof in such a way that they can reform Euclid’s
writing into a modern algorithm and proof of correctness. In this way, the project provides students
not only with a strong sense of connection to the past, but also serious practice with subtle issues
about the nature of adequate mathematical formulation and proof today.

Students can work productively in groups on this project, with group or individual writeups.
They will need substantial guidance with the optional exercises near the end of the project, which
formalize the algorithm in wholly modern terms and prove correctness using finite induction. In
any case, the instructor should always work through all details before assigning any student work.

The issue of “unit” versus “number” will provide grist for substantial class discussion and careful
attention to detail in interpreting Euclid’s analysis of his algorithm. It seems clear that by “unit”
Euclid means what we today call the number “one”, but that to him it was not a number. Why this
is the case for Euclid, and how it plays out in his writings, is rich material for critical consideration
when studying Euclid.
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The heart of Euclid’s description of his algorithm actually has multiple possible interpretations,
and can produce different implementations. Instructors should prepare well on this matter before
discussions with students. In particular, does Euclid intend iterations of repeated subtraction of
smaller from larger, or does he intend iterations of the division algorithm?
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