
Flash Tools for Developers: Function Grapher
A Guide

This paper is a companion to the online article at the MathDL Digital Classroom
Resources "Flash Tools for Developers: Function Grapher" by Barbara Kaskosz and
Douglas E. Ensley. This paper provides instructions on how to use the three function
grapher templates and the ActionScript classes presented in the article. The templates
and the classes discussed below can be downloaded from the article through the link
fun_grapher.zip.

Getting Started

Download fun_grapher.zip file and unzip it in a folder on your computer. You will see a
fun_grapher folder which contains all the files related to the article. The ones you are
particularly interested in are: the folder edu which contains all the necessary ActionScript
classes (in a nested sequence of folders), and the three source files for the templates:
fg_template1.fla, fg_template2.fla, fg_template3.fla. Working right from the folder
fun_grapher, you can open one of the three template fla files in Flash MX 2004
Professional or Flash 8 Professional and begin customizing the template to your liking.
Or, if you prefer a clean working environment you can copy the edu folder and the
templates or one of them into a new folder. For Flash to be able to find the classes, the
folder edu must reside in the same folder as the template you are working on:

Open your version of Flash, navigate to, and open one of the templates. For the purposes
of this demonstration we will work first with fg_template1.fla. (The screen shots below
show Flash 8 but everything looks very similar in Flash MX 2004.) After you open the
template, you may want to save it under a new name as your working file, for example,
your_grapher.fla. To do that you go to File Save As, click on Save As, type the new
name in the dialog box, and click save. If you are in Flash 8, a dialog box will appear
asking you if you want to convert the file (which was originally created in Flash MX
2004) to Flash 8 format. If you plan to continue working in Flash 8, click "Save". If you
are in Flash 2004, no dialog box will appear.

We now have in front of us the file your_grapher.fla open. Let us examine the elements
of the file.

 1

Elements of the Grapher's fla File

The main elements you see are the Timeline, the Stage, which is not visible in its entirety
because of the movie's size, and the Properties panel. The Actions' panel tag is visible but
the panel is closed. A portion of the open Library shows on the picture below. If the
Library is not open, go to the Window item in the uppermost menu and click Library in
the dropdown menu. The Library contains assets for our movie. (A few buttons and a
movie clip, nothing to be concerned about at this moment.) All the code for the grapher
can be found in the Actions panel. We will open it and examine it later. First, let's look at
other elements.

The Timeline has only one frame and two layers. The layer named Scripts is a holder for
all ActionScript code in the movie; the layer UIElems holds all elements you see on the
Stage. (Layers in Flash serve mostly as a convenience at the authoring time; they help
you organize the elements of your application. In most cases, layers do not matter much
for your final compiled file.) If you click on the UIElems layer, all elements on the Stage

 2

become selected which is indicated by blue outline boxes around them. Deselect them by
clicking on any empty spot on the Stage.

Throughout this paper we are assuming that the Selection Tool (the left arrow in the top
row of the Tools panel) is on unless otherwise specified:

The Stage contains all elements of the grapher which were created manually: input boxes,
buttons, and static text boxes. You can see all of them by sliding vertical and horizontal
sliders on the right and on the bottom of the Stage.

Below the Stage you see the Actions panel tag and the Properties panel which is open. If
no elements on the Stage are selected, the Properties panel shows properties of our
movie: its size, background color, publish settings, and other properties. If you select an
object on the Stage (by clicking on it), the Properties panel will display important
information about the selected object.

Before you do anything else, you may want to see how the compiled movie works. To do
this, click on the Control item located at the uppermost menu. In the dropdown menu that
opens, click on Test Movie:

A new window opens with a compiled your_grapher.swf file playing in the Flash Player.
Familiarize yourself with the grapher's functionality and then close the Player's window.
(In Flash 8, typically, the window floats on top of your fla file; in Flash 2004, it covers
the fla file. In either case, close it by clicking on the "x" at the top right corner of the
grapher's window.) You are back now to the authoring environment.

 3

All the code needed for the grapher to run (besides the code in the classes contained in
the folder edu which will be imported) is attached to Frame 1 of the Scripts layer of the
Timeline. (Most fla files contain a layer whose only purpose is to hold the code. It is
usually named "Control" or "actions" or "Scripts".) To access the code, select the Scripts
layer by clicking on it, then open the Actions panel by clicking on its name (or on the
little arrow next to it):

Note: in order to see the code, you must select the Scripts layer first as the code is placed
on Frame 1 of this layer.

Unless you want to use ActionScript help as you modify the code, click on the little
arrow marked on the picture to close the left panel and have a bigger window within
which to work with code. Now that we know where all the elements are, let's learn how
to work with them. Close Action panel by clicking on its name and let's get back to
elements on the Stage.

Elements on Stage: Properties and Instance Names

The elements on the Stage were created manually and consist of input text fields, static
text fields, and buttons. Input text fields and buttons are controlled by ActionScript so
they must have instance names. Click, for example, on the box next to the label "f3(x)=".
The blue outline appears indicating that the text field is selected and its description shows
in Properties panel. (Make sure the panel is open.)

 4

The description tells us that the text field is of the type "Input Text" in which the user will
enter text. Just below the type Input Text, we see the instance name, InputBox3, which
was given to the field. When you place a new input or dynamic text field on the Stage
you must assign an instance name to it by typing the name in the instance name box as
shown on the picture. (The same holds true for buttons and movie clips placed on the
Stage.) For input text fields it is also important to select the Single line option marked
above to prevent the user from entering hard breaks in a compiled movie. The font should
not be the same as the font of static text boxes. Since our static text on the Stage is in
Arial, we chose the generic _sans font for all input boxes. The size of the font is chosen
to be 14, the color black, the alignment left. The clicked button to the left of "Var" gives
our box background and border. The default colors are white and black, respectively. We
will change the color of the border for InputBox3 programmatically.

Failure to assign instance names to objects on the Stage is a very common reason for
your code not to work. Below is a screen shot with RESET button selected. Properties
panel tells us that RESET is a button, an instance of resetBtn. The name resetBtn was
given to the button when the button was first created, and the name which the button's
prototype has in the Library, but this is not the name that matters to us at this point. (We
will talk more about instances and Library assets in Creating New Objects on Stage
section.) The name by which the button will be accessed by ActionScript is its instance
name, butReset, typed in the box encircled in red. You could create more instances of
resetBtn by dragging it from the library window to the Stage, give each instance its own
unique name and control each of them separately through ActionScript.

 5

You can move elements on the Stage by selecting them and then pressing arrow keys;
you can also drag them with the mouse. But, you can achieve the most precise
positioning by assigning x- and y- coordinates to an element by typing the coordinates in
the X and Y boxes marked on the picture above. Our RESET button's position is
x=484.0, y=323.0. You can move it by typing new numbers into the boxes.

In Flash, the x-coordinate is the horizontal coordinate, in pixels, measured from the
upper left corner of the movie (whose x-coordinate is 0) and increasing to the right. The
y-coordinate is the vertical coordinate, in pixels, measured from the upper left corner of
the movie (whose y-coordinate is 0) and increasing when you go down.

We will learn later how to create new buttons, text fields, and other user interface
elements. For now, please read the explanations in the static text box on the Stage in blue
font (you see the very bottom of it in the upper left corner of the picture above), then
select the box (note that static boxes do not have instance names) and delete the box from
the Stage by pressing the delete key.

Modifying the Script: Changing Appearance

In this section, we will show how to customize the appearance and the properties of the
grapher through simple modifications of the script. Select the Scripts layer and open the
Actions panel. Most of the text you see are comments. Comments are enclosed between
/*…*/ or following //, and they appear in faded grey. The comments are design to walk
you step-by-step through the script. For the purpose of our little exercise, scroll to line 54.
(If line numbers are not showing click on the little menu icon marked by the arrow on the
picture below and check Line Numbers.)

 6

The line 54 that you see is instantiating the custom class, GraphingBoard, contained in
the package edu.uriship.math.fungraph (the package was imported on line 40) and storing
the instance in the variable "board". The instance "board" will create a square graphing
board where all your graphs will appear. "board" will also be responsible for creating
graphs, for formatting and displaying the error box, the coordinates display box, and for
performing other tasks. The constructor of the class, evoked by the word "new", takes
several parameters. The first three are responsible for the location and the size of the
board within the target movie clip. The target movie clip above is the main movie,
referred to as "this", and "board" is placed on the depth 1 which is specified by the last
parameter.

For the purposes of this demonstration, we begin our customization by changing colors
and properties of some of the elements controlled by "board". Suppose we want a white
graphing board with a black border instead of the dramatic black board with white
border. It takes only a few simple changes to the code.

Scroll to line 180. You see there:

 board.changeBorderColor(0xFFFFFF);

Change it to:

 board.changeBorderColor(0x000000);

(As you see, the method takes as a parameter a hex number of a color.)

Scroll to line 187. You see there:

 board.changeBackColor(0x000000);

Change it to:

 board.changeBackColor(0xFFFFFF);

Go to Control Test Movie. As you see, the board is white, with black border. The axes
appear awfully light, though. If you mouse over the board, the coordinate display box
still has a black background. If you enter a formula for one of the functions with a syntax
error, i.e., x+ , and click GRAPH, the error box that appears has a black background. We
need to change all that. Close the compiled movie and go back to the fla file.

 7

Scroll to line 194. You see there:

 board.setErrorBoxFormat(0x000000,0x000000,0xCCCCCC,12);

Change it to:

 board.setErrorBoxFormat (0xFFFFFF,0xFFFFFF,0x000000,12);

The method takes parameters that control your error box's background color, border
color, text color, and text size.

Scroll to line 212. You see there:

 board.setCoordsBoxFormat(0x000000,0x000000,0xCCCCCC,12);

Change it to:

 board.setCoordsBoxFormat (0xFFFFFF,0xFFFFFF,0x000000,12);

The method takes parameters that control your coordinate display box's background
color, border color, text color, and text size.

Test the movie now. Mouse over the board and try to graph "x+". The error box and and
coordinate display box appear in proper colors. Try to draw on the board with the mouse.
Your drawing is in light yellow. We need to change that, as well as axes color. Go back
to the fla file and scroll to line 222:

 board.enableUserDraw(0xFFFF00,1);

The line instructs "board" to enable the user to draw in yellow with the line thickness 1.
Change it to whatever color and thickness you want, for example, dark gold:

 board.enableUserDraw(0xFF6600,1);

Scroll to line 229:

 board.setAxesColor(0xCCCCCC);

If you want axes to be black, change it to:

 board.setAxesColor(0x000000);

Test the movie now. Graph three functions, say "x", "sin(x)", "tan(x)". The red of the
first graph seems fine but the green and the cyan of the other two graphs are too light.

"board" controls the color of graphs it produces. To change them go back to the fla file
and scroll to line 496:

 board.drawGraph(2,f2Array,0x00FF00);

 8

The method is evoked within a function makeGraphs which has already parsed the user's
input for f2(x) and produced an array of points f2Array to be graphed. The first parameter
of the method is the number of the graph (it also is the depth of the graph within a movie
clip internal to "board"). The last parameter determines the color of the graph. Let's
darken it a bit. Change the line to:

 board.drawGraph(2,f2Array,0x009900);

Scroll to line 523 and change:

 board.drawGraph(3,f3Array,0x00FFFF);
to
 board.drawGraph(3,f3Array,0x0000FF);

which will produce a blue graph (or enter any other color you want).

Test the movie, graph a few functions. All the colors appear pleasing, except for the
colors of the two last input boxes' borders and their labels which do not correspond any
more to colors of the graphs. The colors of the borders for those boxes are set
programmatically. Go to line 139 and change it to:

 InputBox2.borderColor=0x009900;

Go to line 143 and change it to:

 InputBox3.borderColor=0x0000FF;

Labels "f2" and "f3" are static text boxes. They cannot be controlled programmatically;
we have to adjust their colors manually on the Stage. Close the Actions panel by clicking
on its name. Make sure that the Properties panel is open. On the Stage click on "f3="
label. The blue outline box around the static text box and its description in the Properties
panel appear. In the Properties panel, click on the small colored rectangle to the right of
the font size. A color palette shows. Click on the blue rectangle:

 9

After you click, the color of the font within the selected text field changes to blue.
Similarly, you can change the color of "f2=" label by clicking on the rectangle #009900
in the palette although the color of the label as is seems fine. Test the Movie again. You
have successfully changed the coloring of the grapher.

Modifying the Script: Resizing and Repositioning

If you want to change the layout of the grapher, the first thing you may want to change is
the size of the graphing board. This is done very easily. Go to line 54 again where
"board" is instantiated:

 var board:GraphingBoard = new GraphingBoard(20,20,350,this,1);

The first two numbers, 20, 20, give the x- and the y-position, in pixels, of the upper left
corner of the graphing board with respect to the main movie. "350" is the size of the
board. Change 350 to 250:

 var board:GraphingBoard = new GraphingBoard(20,20,250,this,1);

Go to Control Test Movie. As you see, the board is much smaller now but it has the
same functionality as before. (If you forgot to delete the static box in blue font, it will
stick out now from underneath the board. Delete it after you go back to the fla file.) After
you resized the board, you may want to change the location of the range input boxes and
their labels. You can do it manually in the fla file. Close the Flash Player and go back to
the fla file. Select the ymax input box right above the ymax label. You have decreased the
size of the board by 100 pixels, so you want to move the box 100 pixels to the left. You
can drag the box with the mouse, but you will achieve more precision (particularly not
seeing the graphing board at the authoring time) by changing the box's coordinates in the
Properties panel:

Change the x-coordinate marked on the picture above to 280.0. (The change takes effect
when you click anywhere outside the X box.) Select the static text box "ymax" and
change its x-coordinate in the Properties panel from 397.0 to 297.0. Test the movie now.
The ymax input box and its label are in the right position. Reposition similarly other

 10

range boxes and their labels. (For ymin and xmax boxes and their labels, you have to
decrease both coordinates by 100. For xmin, only the y-coordinate.) Test the movie.
Mouse over the graphing board. The coordinate display box is now outside the board.

Although the coordinate display box and the error box are both a part of "board" and are
controlled by "board'", they do not have to be positioned within the square where you
want the graphs to appear. You can place them anywhere you want. Open the Actions
panel and scroll to line 214:

 board.setCoordsBoxSizeAndPos(60,40,20,300);

The parameters control, respectively: width, height, x-coordinate, and y-coordinate of the
box. The x- and the y-coordinates are relative to the graphing board; that is, relative to the
upper left corner of the graphing board, which, in this example, resides at the point
(20,20) of the main movie (see line 54). Let's position the box below the graphing board
in approximately in the middle between xmin and xmax labels. Change line 214 to:

 board.setCoordsBoxSizeAndPos(60,40,100,290);

(The exact middle corresponds to the third parameter 105 but it does not produce a
pleasing appearance.) Since the box is outside of the board, it will be nicer to give it a
black border. Change line 212 to:

 board.setCoordsBoxFormat(0xFFFFFF,0x000000,0x000000,12);

Test the movie. The coordinate box looks fine but when you enter formula with a syntax
error the error box looks unsightly and sticks outside the board. Similarly as the
coordinate box, the error box is a part of and is controlled by "board". Again, however,
we can position it within or outside the graphing board. This time let's leave it on top of
the graphing board. We will only adjust the error box's dimensions. Scroll to line 202 and
change it to:

 board.setErrorBoxSizeAndPos(210,160,20,20);

We changed the width and the height of the box and left its position at (20,20). The
position is relative to "board" so the position of the box in the main movie is (40,40).

Modifying the Script: Changing Functionality

To change functionality of the graphers, we have to delve a little deeper into the code. In
this section we will work with fg_template3.fla. Close the previous file and open
fg_template3.fla. Again, you may want to save it under your own working name. We
want to change the grapher as follows. The user enters only one function. The function is
graphed when the GRAPH button is clicked. Then, when a button df/dx (which we will
create) is clicked the graph of the derivative of the function is displayed.

Let's begin from creating the derivative button. Instead of creating a button from scratch,
we will create a duplicate of an existing button in the Library and edit it appropriately.

 11

Make sure that the Library panel is open. (If it is not, go to Window in the uppermost
menu and click Library in the dropdown menu.) In the Library, select any of the existing
button symbols, say, graphBtn. After selecting the symbol, click the little menu icon in
the upper right corner of the Library panel. (The icon is highlighted in yellow on the
picture below and a red arrow is pointing at it.) After you click the icon a menu opens.
Click Duplicate….

Then a dialog box opens:

Click the Backspace key to clear the highlighted field and type the new name derBtn.
Click OK. The window closes and a new button symbol "derBtn" appears in the Library.
Click on it to select it. Its image (which looks the same as the GRAPH button) appears in
the Library window. Select the FunUI layer on the Timeline and drag the image of the
button from the Library window onto the Stage and place it, say, under the GRAPH
button. The button is selected. In the Properties panel it says that the button is an instance
of derBtn; the instance name field is blank. Type butDer in the instance name field. Now
we need to edit butDer so it has the right label. Right-click on the button and in the menu
that opens click Edit in Place. The button's timeline opens in which you can edit the
button.

 12

Click the text tool marked by the arrow on the picture above and click right after "H" in
GRAPH. The cursor is blinking, you can now edit the text in the text field. Backspace to
clear the existing text and enter df/dx. Click on the Select tool in the Tools panel (the one
we have used all along). The text field is selected. Center it using the arrow buttons,
perhaps increase the font size to 14 using the Properties panel. When you are satisfied, go
to the Edit menu item in the uppermost menu and click Copy in the dropdown menu.

Move the Playhead which is now over the frame Up to Over. Select the text field
containing GRAPH. Delete it by pressing the Delete key. Go to the Edit Paste in Place
and click it. A new text appears. Move the Playhead to the next frame Down and then Hit
and repeat the process. After you are finished, drag the Playhead over the four frames to
see if your button is animated properly. If yes, go to Edit Edit Document. You are
back on the main Stage. You have a button labeled df/dx whose instance name is butDer.
This is the name which we will use to assign functionality to the button via ActionScript.

Select and delete the text field InputBox2 next to the label "f2(x)=". Select and delete the
label itself. Choose the text tool in the Tool box marked "A" (the one we just used
above), click on the "f1(x)= " label and change it to "f(x)=". Select the df/dx button, press

 13

the Shift key and select the GRAPH button. With both of them selected, use the upper
arrow key to move them up a few notches for a nicer appearance.

Now we have to modify the script. We begin by deleting the parts of the script which
have to do with InputBox2 (we have just deleted the box) and processing of f2(x) and its
graph. After we start deleting portions of the script, the line numbers become
approximate as they depend on how many empty lines you deleted in the process.

Select the Scripts layer and open the Actions panel. Scroll to line 128:

 InputBox2.text="";

and delete it. Then scroll to and delete the lines 144 and 146:

 InputBox2.wordWrap=true;

 InputBox2.borderColor=0x00CC00;

Inside the function makeGraphs, delete the lines 271 and 279:

 var sFunction2:String="";

var f2Array=[];

Do the same with the line 294:

 compObj2:CompiledObject;

and with the line 393:

 sFunction2=InputBox2.text;

Go to line approximately 462 and delete the whole block of code to the line
approximately 486:

 if(sFunction2.length>0){

 ……………

 board.drawGraph(2,f2Array,0x00FF00);

 }

Test the movie. The grapher should work fine except that it can graph only one function.
The df/dx button is clickable but does not do anything.

We will augment the script to create the graph of the derivative of the function entered by
the user. Again, line numbers at this point are only approximate. Scroll back to the top of
the script and under the line 112: var points:Number=330; add the line:

 14

 var derArray:Array=[];

The derArray variable will store the points to be plotted in order to create a graph of the
derivative. It has to be a global variable as it will be used by two different functions.
Scroll down all the way to the function makeGraphs and on the line approximately 325,
right after the line: var oRange:RangeObject; add the line:

 derArray=[];

Then on the line approximately 460 right after:

 board.drawGraph(1,f1Array,0xFF0000);

 }

after the "}" shown above but before the final "}" closing the function makeGraphs add
the following block of code:

for(i=0;i<points;i++){

 derArray[i]=[f1Array[i][0],(f1Array[i+1][1]-f1Array[i][1])/xstep];

 }

 derArray[points]=derArray[points-1];

We have created the variable of values to plot the derivative. Now at any point, for
example, after the last line of the code add:

 butDer.onRelease=function(){

 board.drawGraph(2,derArray,0x00FF00);

 }

At last scroll to line approximately 585 inside the function butReset.onRelease and
right below board.eraseGraphs(); add the line:

 derArray=[];

Test the movie now. Enter a function into f(x) box and click the GRAPH button. The
graph appears. Now click the df/dx button the graph of the derivative appears.

Of course, to provide the user with an opportunity to graph derivatives it would be nice to
enable user's draw by adding the line:

 board.enableUserDraw(0xFFFF00,1);

somewhere around line 190, for example, above the line
board.changeBorderColor(0xFFFFFF);. Now the user can draw on the board. To
erase the user's sketches, add the line

 board.eraseUserDraw();

 15

somewhere inside the function butReset.onRelease=function(){….} (line 590
approximately). Or if you wish, create a dedicated ERASE button by duplicating one of
the existing buttons and add the task of erasing the user's sketches to that button.

The Description of Custom Classes

The package edu.uriship.math.fungraph contains five custom classes: CompiledObject,
MathParser, RangeObject, RangeParser, GraphingBoard. Here is the description of the
classes.

• CompiledObject

This simple class defines a datatype that is returned by MathParser. The constructor takes
no parameters.

 var compObj:CompiledObject = new CompiledObject();

Every instance of CompiledObject has three public properties:

compObj.PolishArray -- an array. When compObj is returned by MathParser's
doCompile method, the property represents a parsed mathematical expression in the
Polish notation. Default value [].

compObj.errorMes -- a string. When compObj is returned by MathParser's doCompile
method, the property represents a specific syntax error message. Default value "".

compObj.errorStatus -- a number 0 or 1. When compObj is returned by doCompile, 0
corresponds to no error found, 1 to error found. Default value 0.

Within the three templates, we only use the instances of the class that are returned by
MathParser's doCompile method.

• MathParser

This class is the engine behind parsing the user's input. The constructor takes an array of
strings as a parameter. For example:

 var procFun:MathParser = new MathParser(["x"]);

The array of strings represents names of variables that will be recognized by the instance
of MathParser. In the example above as well as in our templates, we use only one
variable "x". There can be any number of variables, e.g.: new MathParser(["x","y"]), and
they can have names longer than one letter. If you do not want your instance of the parser
to allow variables (for example for the calculator application in Template 3), enter the
empty array into the constructor: new MathParser([]). Constants "pi" and "e" are
automatically recognized and evaluated by the parser; do not enter them into the
constructor.

 16

Every instance of MathParser has two public methods:

procFun.doCompile(string) -- this method takes a string (typically a string entered by
the user) and returns an instance of CompiledObject. To give an example, we repeat
below some of the code from Template 1. The code resides within the makeGraphs
function.

 var sFunction1:String="";

var compObj1:CompiledObject;

 sFunction1=InputBox1.text;

 compObj1=procFun.doCompile(sFunction1);

If compObj1.errorStatus=1, we know that the user has made a syntax error and we can
send comObj1.errorMes to our error box for display. If compObj1.errorStatus=0,
there is no error and we can send

 compObj1.PolishArray

to the evaluator method, doEval, of MathParser. The method is discussed next.

procFun.doEval(array, array) -- this method takes two arrays as parameters. For the
method to do what you want it to do, the first array has to represent a mathematical
expression in the Polish notation returned by the doCompile method, the second provides
values of the variables recognized by the parser listed in the same order as the order in
which the variables were passed to the MathParser constructor. In our templates, there is
only one variable, "x", so the second array contains only one value, for example,
xmin+xstep*i:

 procFun.doEval(compObj1.PolishArray,[xmin+xstep*i]);

(The values xmin, xstep, and i are numerical variables which were defined earlier in the
script, so xmin+xstep*i is a number representing a consecutive value for "x".)

The complete list of functions that MathParser recognizes as well as all the syntax rules
are described in a movie clip that appears in each of the templates when the user mouses
over the SYNTAX button.

• RangeObject

This simple class defines a datatype that is returned by RangeParser's parseRange
method. It is very similar as CompiledObject. The constructor takes no parameters.

 var rangeObj:RangeObject = new RangeObject();

Every instance of RangeObject has three public properties:

 17

rangeObj.Values -- an array. When rangeObj is returned by RangeParser's parseRange
method, the property represents the four numerical values for xmin, xmax, ymin, ymax.
Default value [].

rangeObj.errorMes -- a string. When rangeObj is returned by parseRange method, the
property represents a specific syntax error message. Default value "".

rangeObj.errorStatus -- a number 0 or 1. When rangeObj is returned by RangeParser,
0 corresponds to no error found, 1 to error found. Default value 0.

Within the three templates, we only use the instances of the class that are returned by
RangeParser's parseRange method.

• RangeParser

The RangerParser is a simple utility for parsing the user's input in the range boxes. We
need RangerParser to allow inputs containing "pi" like pi/2, 3*pi/2 2*pi etc., in addition
to numerical inputs. The constructor does not take any parameters:

 var procRange:RangeParser = new RangeParser();

Each instance has only one method, parseRange:

 procRange.parseRange(string,string,string,string).

The method takes four strings as parameters and returns an instance of RangeObject.
Here is an example how we use it in our templates. The code appears within the
makeGraphs function.

 var oRange:RangeObject;

 sXmin=XminBox.text;

sXmax=XmaxBox.text;

 sYmin=YminBox.text;

sYmax=YmaxBox.text;

oRange=procRange.parseRange(sXmin,sXmax,sYmin,sYmax);

If oRange.errorStatus=1, we send oRange.errorMes to our error box for display. If
oRange.errorStatus=0, we use the oRange.Values array to set our range values:

 xmin=oRange.Values[0];

 xmax=oRange.Values[1];

 ymin=oRange.Values[2];

 ymax=oRange.Values[3];

 18

• GraphingBoard

This class is responsible for creating all visual elements of our graphers except for those
that were created at the authoring time. Its constructor:

 var board:GraphingBoard = new GraphingBoard(20,20,350,this,1);

and its methods are used and commented exhaustively in the templates' scripts as well as
in the tutorial sections above. Particularly, those methods used in Template 1 and
Template 3. Below we list them with examples of possible parameters (if they take
parameters):

 board.changeBorderColor(0xFFFFFF)
 board.changeBackColor(0x000000)
 board.enableErrorBox()
 board.disableErrorBox()
 board.setErrorBoxFormat(0x000000,0x000000,0xCCCCCC,12)
 board.setErrorBoxSizeAndPos(300,150,20,20)
 board.enableCoordsDisplay()
 board.disableCoordsDisplay()
 board.setCoordsBoxFormat(0x000000,0x000000,0xCCCCCC,12)
 board.setCoordsBoxSizeAndPos(60,40,20,300)
 board.enableUserDraw(0xFFFF00,1)
 board.disableUserDraw()
 board.setAxesColor(0xCCCCCC)
 board.setVarsRanges(-10,10,-10,10)
 board.drawAxes()
 board.drawGraph(1,f1Array,0xFF0000)
 board.eraseUserDraw()
 board.eraseGraphs()

The latter method erases functions' graphs as well as deletes range settings. It does not
erase the user's sketches. It should be noted that the method board.setVarsRanges
should be called before board.drawAxes or board.drawGraph are called. We do so in
all templates, for example, within the makeGraphs function:

 board.setVarsRanges(xmim,xmax,ymin,ymax)

after xmin, xmax, ymin, ymax are already defined.

In Template 2, which employs Trace functionality, there is a number of instance methods
used that are worth mentioning even though comments in the script should illuminate
their functionality. Every instance of GraphingBoard has a cursor in the shape of a
hairline cross built in. The default size is 12 by 12 pixels, the default color black, the
default line thickness 0. By default, the cursor is not visible. You can change the default
parameters and manipulate the cross's visibility and position to use it for tracing
purposes. The corresponding methods (their usage is illustrated in Template 2) are as
follows:

 board.setCrossColor(0x009900)
 board.setCrossSizeAndThick(6,0)
 board.crossVisible(true)(or board.crossVisible(false))
 board.setCrossPos(50,70)

 19

(The position in the latter method is in pixels and it is relative to the graphing board.) The
last two methods are most instrumental for tracing graphs of functions. We animate the
cross using this.onEnterFrame event handler so from the outside of the "board" instance,
but we set its position and visibility using the "board" methods. To move the cursor along
the graph of a given function and to display the corresponding values of the function at
the same time we need both an array of points on the graph in functional terms and the
corresponding array translated into pixel values. What comes in handy is the fact that, in
addition to drawing graphs, the method board.drawGraph(1,f1FunArray,0xFF0000)
takes a functional array (f1FunArray in this case) as a parameter and returns the
corresponding array in pixels:

 f1PixArray=board.drawGraph(1,f1FunArray,0xFF0000);

This way, we have both arrays f1FunArray and f1PixArray necessary for tracing and
displaying values.

The remaining methods used in Template 2 are:

 board.getBoardSize()
 board.getCrossSize()

which return the size of the graphing board and the size of the cross cursor, respectively.
We also use the method:

 board.isDrawable(a)

A given entry "a" usually represents one of the coordinates in pixels of a point to be
drawn or the cursor to be moved to. The method checks if "a" is a finite number and if it
does not exceed the pixel value beyond which the undesirable effect of "wrapping
around" may occur. (This value is set at 5000 pixels).

The only instance method of GraphingBoard class never mentioned or used is

 board.destroy();

The method removes listeners, deletes movie clips created by board, etc. You should
evoke the method before deleting the variable "board" (should you need to delete it.)

Creating New Object on Stage

The detailed description of how to create buttons, movie clips, and text fields from
scratch and how to edit them is a bit beyond this little guide. We refer the reader to one of
the books listed in the next section. The purpose of this section is to show that the process
is really easy. For example, let's see how little it takes to create a button.

Open Template 1. From the Tools menu choose the Rectangle tool marked on the picture
below:

 20

Click on the stroke rectangle (the little rectangle next to the pencil icon) and select the
empty stroke. Click on the fill rectangle (the rectangle next to the bucket icon) and
choose a color you like. Go to an empty spot on the Stage where you want to place your
button and by pressing and then dragging the mouse draw a rectangle. Go back to the
Selection tool (the uppermost right arrow in the Tools menu) and click on the rectangle
that you have drawn to select it. Then right-click on it. A menu opens:

Click on Convert to Symbol. A dialog box opens:

 21

Make sure that the Button option is selected and in the field where you see Symbol 1,
backspace to erase Symbol 1 and type myBtn instead. Click OK. The dialog box
disappears. If your new button is not selected, select it. (Observe that the type of selection
outline has changed.) In the Instance Name box type butTest (or any other name you
wish):

You have created a new button. Observe that there is a new item in the Library: myBtn. If
you test the movie the new button is clickable except it does not do anything. Open the
Actions panel and add the following code anywhere you like, say at the end:

 butTest.onRelease = function(){

 InputBox1._visible=!InputBox1._visible;

 }

Test the movie now: when you click the button, InputBox1 appears and disappears.

Creating text fields is even easier: select the Text tool from the Tools panel. (The one
marked by "A".) In the Properties panel choose Input Text. Click at the point on the
Stage where you want to put your text box. You see a rectangle whose size you can adjust
by dragging a tiny square at the bottom of it. To add a background to your field, click a
little icon in the Properties panel to the left of "Var".

A careful reader may notice that in all our templates there is a movie clip appearing and
disappearing when the user mouses over the SYNTAX button. Yet, there is no instance
of the movie clip on the Stage. There is a way of attaching movie clips at runtime

 22

provided you establish a linkage to their symbol that resides in the Library. Select
mcSyntax in the Library and click on the tiny menu icon in the upper right corner of the
Library window. A menu opens:

Click on Linkage. What you see in the dialog box that opens is that the clip has been
imported to ActionScript under the name mcSyntax:

Recommended Reading

The complete Flash 8 documentation, including Getting Started with Flash, Using Flash,
Learning ActionScript 2.0 in Flash, ActionScript 2.0 Language Reference, Using
Components in Flash, and more can be downloaded for free from the Macromedia site:

 http://www.macromedia.com/support/documentation/en/flash/

(After you open the page, click on the link Download Complete Flash 8 Documentation.)

A few books that we have found immensely helpful are listed below.

To become familiar with the Flash's authoring environment:

 23

http://www.macromedia.com/support/documentation/en/flash/

1. Katherine Ulrich, Macromedia Flash for Windows and Macintosh: Visual QuickStart
Guide, Peachpit Press, 2004. Flash 8 version is due in December 2005.

2. Robert Reinhardt and Snow Dowd, Macromedia Flash MX 2004 Bible, Wiley
Publishing, 2004. Flash 8 version is due in February 2006.

To learn ActionScript 2.0 (which hasn't changed much between Flash MX 2004 and
Flash 8):

3. Colin Moock, Essential ActionScript 2.0, O'Reilly, 2004.

4. Robert Reinhardt and Joey Lott, Flash MX 2004 ActionScript Bible, Wiley Publishing
2004.

5. Colin Moock, ActionScript for Flash MX: The Definitive Guide, Second Edition,
O'Reilly, 2003.

The latter book was written for an earlier version, Flash MX, but we still find it to be a
great reference.

 24

