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The factorial number system

Each n ∈ Z≥0 has a unique representation

n =
∞∑
i=1

cii! with ci ∈ Z,

0 ≤ ci ≤ i, #{i : ci 6= 0} <∞.

In factorial notation:

n = (. . . c3c2c1)!.

Examples : 25 = (1001)!, 1001 = (121221)!.

Note: c1 ≡ n mod 2.
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Conversion

Given n, one finds all ci by

c1 = (remainder of n1 = n upon division by 2),

ci = (remainder of ni =
ni−1 − ci−1

i
upon division by i+1),

until ni = 0.

Knowing c1, c2, . . . , ck−1 is equivalent to knowing n
modulo k!.
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Profinite numbers

If one starts with n = −1, one finds ci = i for all i:

−1 = (. . . 54321)!.

In general, for a negative integer n one finds ci = i for
almost all i.

A profinite integer is an infinite string (. . . c3c2c1)! with
each ci ∈ Z, 0 ≤ ci ≤ i.

Notation: Ẑ = {profinite integers}.
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A citizen of the world

Features of Ẑ:

• it has an algebraic structure,

• it comes with a topology,

• it occurs in Galois theory,

• it shows up in arithmetic geometry,

• it connects to ultrafilters,

• it carries “analytic” functions,

• and it knows Fibonacci numbers !
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Addition and multiplication

For any k, the last k digits of n+m depend only on the
last k digits of n and of m.

Likewise for n ·m.

Hence one can also define the sum and the product of
any two profinite integers, and Ẑ is a commutative ring.
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Ring homomorphisms

Call a profinite integer (. . . c3c2c1)! even if c1 = 0 and odd
if c1 = 1.

The map Ẑ→ Z/2Z, (. . . c3c2c1)! 7→ (c1 mod 2), is a ring
homomorphism. Its kernel is 2Ẑ.

More generally, for any k ∈ Z>0, one has a ring
homomorphism Ẑ→ Z/k!Z sending (. . . c3c2c1)! to
(
∑

i<k cii! mod k!), and it has kernel k!Ẑ.
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Visualising profinite numbers

Define v : Ẑ→ [0, 1] by

v((. . . c3c2c1)!) =
∑
i≥1

ci
(i+ 1)!

.

Then v(2Ẑ) = [0, 1
2
], v(1 + 2Ẑ) = [1

2
, 1], v(1 + 6Ẑ) = [1

2
, 2
3
].

One has

#v−1r = 2 for r ∈ Q ∩ (0, 1),

#v−1r = 1 for all other r ∈ [0, 1].

Examples :

v−1 1
2

= {−2, 1}, v−1 2
3

= {−5, 3}, v−11 = {−1}.
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Graphs

For graphical purposes, we represent a ∈ Ẑ by
v(a) ∈ [0, 1].

We visualise a function f : Ẑ→ Ẑ by representing its
graph {(a, f(a)) : a ∈ Ẑ} in [0, 1]× [0, 1].
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Four functions

In green: the graph of a 7→ a.

In blue: the graph of a 7→ −a.

In yellow: the graph of a 7→ a−1 − 1 (a ∈ Ẑ∗).

In orange/red/brown: the graph of a 7→ F (a), the “a-th
Fibonacci number”.
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A formal definition

A more satisfactory definition is

Ẑ = {(an)∞n=1 ∈
∞∏
n=1

(Z/nZ) : n|m⇒ am ≡ an mod n}.

This is a subring of
∏∞

n=1(Z/nZ).

Its unit group Ẑ∗ is a subgroup of
∏∞

n=1(Z/nZ)∗.

Alternative definition: Ẑ = End(Q/Z), the endomorphism
ring of the abelian group Q/Z. Then Ẑ∗ = Aut(Q/Z).
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Basic facts

The ring Ẑ is uncountable, it is commutative, and it has
Z as a subring. It has lots of zero-divisors.

For each m ∈ Z>0, there is a ring homomorphism

Ẑ→ Z/mZ, a = (an)∞n=1 7→ am,

which together with the group homomorphism Ẑ→ Ẑ,
a 7→ ma, fits into a short exact sequence

0→ Ẑ
m−→ Ẑ→ Z/mZ→ 0.
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Profinite rationals

Write

Q̂ = {(an)∞n=1 ∈
∞∏
n=1

(Q/nZ) : n|m⇒ am ≡ an mod nZ}.

The additive group Q̂ has exactly one ring multiplication
extending the ring multiplication on Ẑ.

It is a commutative ring, with Q and Ẑ as subrings, and

Q̂ = Q + Ẑ = Q · Ẑ ∼= Q⊗Z Ẑ

(as rings).
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Topology

If each Z/nZ has the discrete topology and
∏∞

n=1(Z/nZ)

the product topology, then Ẑ is closed in
∏∞

n=1(Z/nZ).

One can define the topology on Ẑ by the metric

d(x, y) =
1

min{k ∈ Z>0 : x 6≡ y mod (k + 1)!}

=
1

min{k ∈ Z>0 : ck 6= dk}
if x = (. . . c3c2c1)!, y = (. . . d3d2d1)!, x 6= y.
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More topology

Fact : Ẑ is a compact Hausdorff totally disconnected
topological ring.

One can make the map v : Ẑ→ [0, 1] into a
homeomorphism by “cutting” [0, 1] at every
r ∈ Q ∩ (0, 1).

A neighborhood base of 0 in Ẑ is {mẐ : m ∈ Z>0}.

With the same neighborhood base, Q̂ is also a
topological ring. It is locally compact, Hausdorff, and
totally disconnected.
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Amusements for algebraists

We have Ẑ ⊂ A =
∏∞

n=1(Z/nZ).

Theorem. One has A/Ẑ ∼= A as additive topological
groups.

Proof (Carlo Pagano): write down a surjective continuous
group homomorphism ε : A→ A with ker ε = Ẑ.

Theorem. One has A ∼= A× Ẑ as groups but not as
topological groups.

Here the axiom of choice comes in.
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Profinite groups

In infinite Galois theory, the Galois groups that one
encounters are profinite groups.

A profinite group is a topological group that is
isomorphic to a closed subgroup of a product of finite
discrete groups.

Equivalent definition: it is a compact Hausdorff totally
disconnected topological group.

Examples : the additive group of Ẑ and its unit group Ẑ∗

are profinite groups.
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Ẑ as the analogue of Z

Familiar fact. For each group G and each γ ∈ G there is
a unique group homomorphism Z→ G with 1 7→ γ,
namely n 7→ γn.

Analogue for Ẑ. For each profinite group G and each
γ ∈ G there is a unique group homomorphism Ẑ→ G
with 1 7→ γ, and it is continuous. Notation: a 7→ γa.
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Examples of infinite Galois groups

For a field k, denote by k̄ an algebraic closure.

Example 1: with p prime and Fp = Z/pZ one has

Ẑ ∼= Gal(F̄p/Fp), a 7→ Froba,

where Frob(α) = αp for all α ∈ F̄p.

Example 2: with

µ = {roots of unity in Q̄∗} ∼= Q/Z

one has
Gal(Q(µ)/Q) ∼= Autµ ∼= Ẑ∗

as topological groups.
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Radical Galois groups

Example 3. For r ∈ Q, r /∈ {−1, 0, 1}, put
∞
√
r = {α ∈ Q̄ : ∃n ∈ Z>0 : αn = r}.

Theorem (Abtien Javanpeykar). Let G be a profinite
group. Then there exists r ∈ Q\{−1, 0, 1} with
G ∼= Gal(Q(∞

√
r)/Q) (as topological groups) if and only if

there is a non-split exact sequence

0→ Ẑ
ι−→ G

π−→ Ẑ∗ → 1

of profinite groups such that

∀a ∈ Ẑ, γ ∈ G : γ · ι(a) · γ−1 = ι(π(γ) · a).
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Arithmetic geometry

Given f1, . . . , fk ∈ Z[X1, . . . , Xn], one wants to solve the
system f1(x) = . . . = fk(x) = 0 in x = (x1, . . . , xn) ∈ Zn.

Theorem. (a) There is a solution x ∈ Zn ⇒ for each
m ∈ Z>0 there is a solution modulo m ⇔ there is a
solution x ∈ Ẑn.

(b) It is decidable whether a given system has a
solution x ∈ Ẑn.
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p-adic numbers

Let p be prime. The ring of p-adic integers is

Zp = {(bi)∞i=0 ∈
∞∏
i=0

(Z/piZ) : i ≤ j ⇒ bj ≡ bi mod pi}.

Just as Ẑ, it is a compact Hausdorff totally disconnected
topological ring.

It is also a principal ideal domain, with pZp as its only
non-zero prime ideal. Its field of fractions is written Qp.

All ideals of Zp are closed, and of the form phZp with
h ∈ Z≥0 ∪ {∞}, where p∞Zp = {0}.
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The Chinese remainder theorem

For n =
∏

p prime p
i(p) one has

Z/nZ ∼=
∏

p prime

(Z/pi(p)Z) (as rings).

In the limit:

Ẑ ∼=
∏

p prime

Zp (as topological rings).

For each p, the projection map Ẑ→ Zp induces a ring

homomorphism πp : Q̂→ Qp.
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Profinite number theory

The isomorphism Ẑ ∼=
∏

p Zp reduces most questions that

one may ask about Ẑ to similar questions about the
much better behaved rings Zp.

Profinite number theory studies the exceptions. Many of
these are caused by the set P of primes being infinite.

Profinite number theory Hendrik Lenstra



Ideals of Ẑ

For an ideal a ⊂ Ẑ =
∏

p Zp, one has:

a is closed ⇔ a is finitely generated ⇔ a is principal

⇔ a =
∏

p ap where each ap ⊂ Zp an ideal.

The set of closed ideals of Ẑ is in bijection with the set
{
∏

p p
h(p) : h(p) ∈ Z≥0 ∪ {∞}} of Steinitz numbers.

Most ideals of Ẑ are not closed.
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The spectrum and ultrafilters

The spectrum SpecR of a commutative ring R is its set
of prime ideals. Example: SpecZp = {{0}, pZp}.

With each p ∈ Spec Ẑ one associates the ultrafilter

Υ(p) = {S ⊂ P : eS ∈ p}
on the set P of primes, where eS ∈

∏
p∈P Zp = Ẑ has

coordinate 0 at p ∈ S and 1 at p /∈ S.

Then p is closed if and only if Υ(p) is principal, and

Υ(p) = Υ(q)⇔ p ⊂ q or q ⊂ p.
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The logarithm

u ∈ R>0 ⇒ log u = ( d
dx
ux)x=0 = limε→0

uε−1
ε

.

Analogously, define log : Ẑ∗ → Ẑ by

log u = lim
n→∞

un! − 1

n!
.

This is a well-defined continuous group homomorphism.

Its kernel is Ẑ∗tor, which is the closure of the set of
elements of finite order in Ẑ∗.

Its image is 2J = {2x : x ∈ J}, where J =
⋂
p pẐ is the

Jacobson radical of Ẑ.
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Structure of Ẑ∗

The logarithm fits in a commutative diagram

1 // Ẑ∗tor
//

o
��

Ẑ∗
log

// 2J // 0

1 (Ẑ/2J)∗oo Ẑ∗oo 1 + 2Joo

o

OO

1oo

of profinite groups, where the other horizontal maps are
the natural ones, the rows are exact, and the vertical
maps are isomorphisms.

Corollary: Ẑ∗ ∼= (Ẑ/2J)∗ × 2J (as topological groups).
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More on Ẑ∗

Less canonically, with A =
∏

n≥1(Z/nZ):

2J ∼= Ẑ,

(Ẑ/2J)∗ ∼= (Z/2Z)×
∏
p

(Z/(p− 1)Z) ∼= A,

Ẑ∗ ∼= A× Ẑ,

as topological groups, and

Ẑ∗ ∼= A

as groups.
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Power series expansions

The inverse isomorphisms

log : 1 + 2J
∼−→ 2J

exp: 2J
∼−→ 1 + 2J

are given by power series expansions

log(1− x) = −
∞∑
n=1

xn

n
, expx =

∞∑
n=0

xn

n!

that converge for all x ∈ 2J.

The logarithm is analytic on all of Ẑ∗ in a weaker sense.
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Analyticity

Let x0 ∈ D ⊂ Q̂. We call f : D → Q̂ analytic in x0 if
there is a sequence (an)∞n=0 ∈ Q̂∞ such that one has

f(x) =
∞∑
n=0

an · (x− x0)n

in the sense that for each prime p there is a neighborhood
U of x0 in D such that for all x ∈ U the equality

πp(f(x)) =
∞∑
n=0

πp(an) · (πp(x)− πp(x0))n

is valid in the topological field Qp.

Profinite number theory Hendrik Lenstra



Examples of analytic functions

The map log : Ẑ∗ → Ẑ ⊂ Q̂ is analytic in each x0 ∈ Ẑ∗,
with expansion

log x = log x0 −
∞∑
n=1

(x0 − x)n

n · xn0
.

For each u ∈ Ẑ∗, the map

Ẑ→ Ẑ∗ ⊂ Q̂, x 7→ ux

is analytic in each x0 ∈ Ẑ, with expansion

ux =
∞∑
n=0

(log u)n · ux0 · (x− x0)n

n!
.
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A Fibonacci example

Define F : Z≥0 → Z≥0 by

F (0) = 0, F (1) = 1, F (n+ 2) = F (n+ 1) + F (n).

Theorem. The function F has a unique continuous
extension Ẑ→ Ẑ, and it is analytic in each x0 ∈ Ẑ.

Notation: F .

For n ∈ Z, one has

F (n) = n⇔ n ∈ {0, 1, 5}.
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Up to eleven

One has #{x ∈ Ẑ : F (x) = x} = 11.

The only even fixed point of F is 0, and for each
a ∈ {1, 5}, b ∈ {−5,−1, 0, 1, 5} there is a unique fixed
point za,b with

za,b ≡ a mod
∞⋂
n=0

6nẐ, za,b ≡ b mod
∞⋂
n=0

5nẐ.

Examples : z1,1 = 1, z5,5 = 5.
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Graphing the fixed points

The graph of a 7→ F (a) is shown in orange/red/brown.

Intersecting the graph with the diagonal one obtains the
fixed points 0 and za,b, for a = 1, 5, b = −5, −1, 0, 1, 5.

Surprise: one has z25,−5 − 25 =
∑∞

i=1 cii! with ci = 0 for
i ≤ 200 and c201 6= 0.
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Larger cycles

I believe:

#{x ∈ Ẑ : F (F (x)) = x} = 21,

#{x ∈ Ẑ : F n(x) = x} <∞ for each n ∈ Z>0.

Question: does F have cycles of length greater than 2?
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Other linear recurrences

If E : Z≥0 → Z, t ∈ Z>0, d0, . . . , dt−1 ∈ Z satisfy

∀n ∈ Z≥0 : E(n+ t) =
t−1∑
i=0

di · E(n+ i),

d0 ∈ {1,−1},
then E has a unique continuous extension Ẑ→ Ẑ. It is
analytic in each x0 ∈ Ẑ.
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Finite cycles

Suppose also X t −
∑t−1

i=0 diX
i =

∏t
i=1(X − αi), where

α1, . . . , αt ∈ Q(
√

Q),

α24
j 6= α24

k (1 ≤ j < k ≤ t).

Tentative theorem. If n ∈ Z>0 is such that the set

Sn = {x ∈ Ẑ : En(x) = x}
is infinite, then Sn ∩ Z≥0 contains an infinite arithmetic
progression.

This would imply that {x ∈ Ẑ : F n(x) = x} is finite for
each n ∈ Z>0.
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Who’s who

Fibonacci, Italian mathematician, ∼1170–∼1250.

Évariste Galois, French mathematician, 1811–1832.

Ferdinand Georg Frobenius, German mathematician,
1849–1917.

Felix Hausdorff, German mathematician, 1868–1942.

Ernst Steinitz, German mathematician, 1871–1928.

Nathan Jacobson, American mathematician, 1910–1999.

Willem Jan Palenstijn, Dutch mathematician, 1980.

Abtien Javanpeykar, Dutch mathematics student, 1989.

Carlo Pagano, Italian mathematics student, 1990.
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