Profinite number theory

Hendrik Lenstra

Mathematisch Instituut
Universiteit Leiden

The factorial number system

Each $n \in \mathbf{Z}_{\geq 0}$ has a unique representation

$$
\begin{gathered}
n=\sum_{i=1}^{\infty} c_{i}!\text { with } c_{i} \in \mathbf{Z}, \\
0 \leq c_{i} \leq i, \quad \#\left\{i: c_{i} \neq 0\right\}<\infty .
\end{gathered}
$$

In factorial notation:

$$
n=\left(\ldots c_{3} c_{2} c_{1}\right)!.
$$

Examples: $25=(1001)!, 1001=(121221)!$.
Note: $c_{1} \equiv n \bmod 2$.

Conversion

Given n, one finds all c_{i} by

$$
c_{1}=\left(\text { remainder of } n_{1}=n \text { upon division by } 2\right),
$$

$c_{i}=\left(\right.$ remainder of $n_{i}=\frac{n_{i-1}-c_{i-1}}{i}$ upon division by $\left.i+1\right)$,
until $n_{i}=0$.
Knowing $c_{1}, c_{2}, \ldots, c_{k-1}$ is equivalent to knowing n modulo k !.

Profinite numbers

If one starts with $n=-1$, one finds $c_{i}=i$ for all i :

$$
-1=(\ldots 54321)!.
$$

In general, for a negative integer n one finds $c_{i}=i$ for almost all i.

A profinite integer is an infinite string $\left(\ldots c_{3} c_{2} c_{1}\right)$! with each $c_{i} \in \mathbf{Z}, 0 \leq c_{i} \leq i$.

Notation: $\hat{\mathbf{Z}}=\{$ profinite integers $\}$.

A citizen of the world

Features of $\hat{\mathbf{Z}}$:

- it has an algebraic structure,
- it comes with a topology,
- it occurs in Galois theory,
- it shows up in arithmetic geometry,
- it connects to ultrafilters,
- it carries "analytic" functions,
- and it knows Fibonacci numbers!

Addition and multiplication

For any k, the last k digits of $n+m$ depend only on the last k digits of n and of m.

Likewise for $n \cdot m$.
Hence one can also define the sum and the product of any two profinite integers, and $\hat{\mathbf{Z}}$ is a commutative ring.

Ring homomorphisms

Call a profinite integer $\left(\ldots c_{3} c_{2} c_{1}\right)$! even if $c_{1}=0$ and odd if $c_{1}=1$.

The map $\hat{\mathbf{Z}} \rightarrow \mathbf{Z} / 2 \mathbf{Z},\left(\ldots c_{3} c_{2} c_{1}\right)!\mapsto\left(c_{1} \bmod 2\right)$, is a ring homomorphism. Its kernel is $2 \hat{\mathbf{Z}}$.

More generally, for any $k \in \mathbf{Z}_{>0}$, one has a ring homomorphism $\hat{\mathbf{Z}} \rightarrow \mathbf{Z} / k!\mathbf{Z}$ sending $\left(\ldots c_{3} c_{2} c_{1}\right)$! to $\left(\sum_{i<k} c_{i} i!\bmod k!\right)$, and it has kernel $k!\hat{\mathbf{Z}}$.

Visualising profinite numbers

Define v: $\hat{\mathbf{Z}} \rightarrow[0,1]$ by

$$
\mathrm{v}\left(\left(\ldots c_{3} c_{2} c_{1}\right)_{!}\right)=\sum_{i \geq 1} \frac{c_{i}}{(i+1)!}
$$

Then $\mathrm{v}(2 \hat{\mathbf{Z}})=\left[0, \frac{1}{2}\right], \mathrm{v}(1+2 \hat{\mathbf{Z}})=\left[\frac{1}{2}, 1\right], \mathrm{v}(1+6 \hat{\mathbf{Z}})=\left[\frac{1}{2}, \frac{2}{3}\right]$.
One has

$$
\begin{gathered}
\# \mathrm{v}^{-1} r=2 \text { for } r \in \mathbf{Q} \cap(0,1), \\
\# \mathrm{v}^{-1} r=1 \text { for all other } r \in[0,1] .
\end{gathered}
$$

Examples:

$$
\mathrm{v}^{-1} \frac{1}{2}=\{-2,1\}, \quad \mathrm{v}^{-1} \frac{2}{3}=\{-5,3\}, \quad \mathrm{v}^{-1} 1=\{-1\} .
$$

Graphs

For graphical purposes, we represent $a \in \hat{\mathbf{Z}}$ by $\mathrm{v}(a) \in[0,1]$.

We visualise a function $f: \hat{\mathbf{Z}} \rightarrow \hat{\mathbf{Z}}$ by representing its $\operatorname{graph}\{(a, f(a)): a \in \hat{\mathbf{Z}}\}$ in $[0,1] \times[0,1]$.
Illustration by Willem Jan Palenstijn

Four functions

In green: the graph of $a \mapsto a$.
In blue: the graph of $a \mapsto-a$.
In yellow: the graph of $a \mapsto a^{-1}-1\left(a \in \hat{\mathbf{Z}}^{*}\right)$.
In orange/red/brown: the graph of $a \mapsto F(a)$, the " a-th Fibonacci number".

A formal definition

A more satisfactory definition is

$$
\hat{\mathbf{Z}}=\left\{\left(a_{n}\right)_{n=1}^{\infty} \in \prod_{n=1}^{\infty}(\mathbf{Z} / n \mathbf{Z}): n \mid m \Rightarrow a_{m} \equiv a_{n} \bmod n\right\}
$$

This is a subring of $\prod_{n=1}^{\infty}(\mathbf{Z} / n \mathbf{Z})$.
Its unit group $\hat{\mathbf{Z}}^{*}$ is a subgroup of $\prod_{n=1}^{\infty}(\mathbf{Z} / n \mathbf{Z})^{*}$.
Alternative definition: $\hat{\mathbf{Z}}=\operatorname{End}(\mathbf{Q} / \mathbf{Z})$, the endomorphism ring of the abelian group \mathbf{Q} / \mathbf{Z}. Then $\hat{\mathbf{Z}}^{*}=\operatorname{Aut}(\mathbf{Q} / \mathbf{Z})$.

Basic facts

The ring $\hat{\mathbf{Z}}$ is uncountable, it is commutative, and it has \mathbf{Z} as a subring. It has lots of zero-divisors.

For each $m \in \mathbf{Z}_{>0}$, there is a ring homomorphism

$$
\hat{\mathbf{Z}} \rightarrow \mathbf{Z} / m \mathbf{Z}, \quad a=\left(a_{n}\right)_{n=1}^{\infty} \mapsto a_{m},
$$

which together with the group homomorphism $\hat{\mathbf{Z}} \rightarrow \hat{\mathbf{Z}}$, $a \mapsto m a$, fits into a short exact sequence

$$
0 \rightarrow \hat{\mathbf{Z}} \xrightarrow{m} \hat{\mathbf{Z}} \rightarrow \mathbf{Z} / m \mathbf{Z} \rightarrow 0 .
$$

Profinite rationals

Write

$$
\hat{\mathbf{Q}}=\left\{\left(a_{n}\right)_{n=1}^{\infty} \in \prod_{n=1}^{\infty}(\mathbf{Q} / n \mathbf{Z}): n \mid m \Rightarrow a_{m} \equiv a_{n} \bmod n \mathbf{Z}\right\}
$$

The additive group $\hat{\mathbf{Q}}$ has exactly one ring multiplication extending the ring multiplication on $\hat{\mathbf{Z}}$.
It is a commutative ring, with \mathbf{Q} and $\hat{\mathbf{Z}}$ as subrings, and

$$
\hat{\mathbf{Q}}=\mathbf{Q}+\hat{\mathbf{Z}}=\mathbf{Q} \cdot \hat{\mathbf{Z}} \cong \mathbf{Q} \otimes_{\mathbf{Z}} \hat{\mathbf{Z}}
$$

(as rings).

Topology

If each $\mathbf{Z} / n \mathbf{Z}$ has the discrete topology and $\prod_{n=1}^{\infty}(\mathbf{Z} / n \mathbf{Z})$ the product topology, then $\hat{\mathbf{Z}}$ is closed in $\prod_{n=1}^{\infty}(\mathbf{Z} / n \mathbf{Z})$.

One can define the topology on $\hat{\mathbf{Z}}$ by the metric

$$
\begin{gathered}
\mathrm{d}(x, y)=\frac{1}{\min \left\{k \in \mathbf{Z}_{>0}: x \not \equiv y \bmod (k+1)!\right\}} \\
=\frac{1}{\min \left\{k \in \mathbf{Z}_{>0}: c_{k} \neq d_{k}\right\}} \\
\text { if } x=\left(\ldots c_{3} c_{2} c_{1}\right)!, y=\left(\ldots d_{3} d_{2} d_{1}\right)!, x \neq y .
\end{gathered}
$$

More topology

Fact: $\hat{\mathbf{Z}}$ is a compact Hausdorff totally disconnected topological ring.

One can make the map v: $\hat{\mathbf{Z}} \rightarrow[0,1]$ into a homeomorphism by "cutting" $[0,1]$ at every $r \in \mathbf{Q} \cap(0,1)$.

A neighborhood base of 0 in $\hat{\mathbf{Z}}$ is $\left\{m \hat{\mathbf{Z}}: m \in \mathbf{Z}_{>0}\right\}$.
With the same neighborhood base, $\hat{\mathbf{Q}}$ is also a topological ring. It is locally compact, Hausdorff, and totally disconnected.

Amusements for algebraists

We have $\hat{\mathbf{Z}} \subset \mathrm{A}=\prod_{n=1}^{\infty}(\mathbf{Z} / n \mathbf{Z})$.
Theorem. One has $\mathrm{A} / \hat{\mathbf{Z}} \cong \mathrm{A}$ as additive topological groups.

Proof (Carlo Pagano): write down a surjective continuous group homomorphism $\epsilon: \mathrm{A} \rightarrow \mathrm{A}$ with $\operatorname{ker} \epsilon=\hat{\mathbf{Z}}$.

Theorem. One has $\mathrm{A} \cong \mathrm{A} \times \hat{\mathbf{Z}}$ as groups but not as topological groups.

Here the axiom of choice comes in.

Profinite groups

In infinite Galois theory, the Galois groups that one encounters are profinite groups.

A profinite group is a topological group that is isomorphic to a closed subgroup of a product of finite discrete groups.

Equivalent definition: it is a compact Hausdorff totally disconnected topological group.

Examples: the additive group of $\hat{\mathbf{Z}}$ and its unit group $\hat{\mathbf{Z}}^{*}$ are profinite groups.

$\hat{\mathbf{Z}}$ as the analogue of \mathbf{Z}

Familiar fact. For each group G and each $\gamma \in G$ there is a unique group homomorphism $\mathbf{Z} \rightarrow G$ with $1 \mapsto \gamma$, namely $n \mapsto \gamma^{n}$.

Analogue for $\hat{\mathbf{Z}}$. For each profinite group G and each $\gamma \in G$ there is a unique group homomorphism $\hat{\mathbf{Z}} \rightarrow G$ with $1 \mapsto \gamma$, and it is continuous. Notation: $a \mapsto \gamma^{a}$.

Examples of infinite Galois groups

For a field k, denote by \bar{k} an algebraic closure.
Example 1: with p prime and $\mathbf{F}_{p}=\mathbf{Z} / p \mathbf{Z}$ one has

$$
\hat{\mathbf{Z}} \cong \operatorname{Gal}\left(\overline{\mathbf{F}}_{p} / \mathbf{F}_{p}\right), \quad a \mapsto \operatorname{Frob}^{a},
$$

where $\operatorname{Frob}(\alpha)=\alpha^{p}$ for all $\alpha \in \overline{\mathbf{F}}_{p}$.
Example 2: with

$$
\mu=\left\{\text { roots of unity in } \overline{\mathbf{Q}}^{*}\right\} \cong \mathbf{Q} / \mathbf{Z}
$$

one has

$$
\operatorname{Gal}(\mathbf{Q}(\mu) / \mathbf{Q}) \cong \operatorname{Aut} \mu \cong \hat{\mathbf{Z}}^{*}
$$

as topological groups.

Radical Galois groups

Example 3. For $r \in \mathbf{Q}, r \notin\{-1,0,1\}$, put

$$
\sqrt[\infty]{r}=\left\{\alpha \in \overline{\mathbf{Q}}: \exists n \in \mathbf{Z}_{>0}: \alpha^{n}=r\right\}
$$

Theorem (Abtien Javanpeykar). Let G be a profinite group. Then there exists $r \in \mathbf{Q} \backslash\{-1,0,1\}$ with $G \cong \operatorname{Gal}(\mathbf{Q}(\sqrt[\infty]{r}) / \mathbf{Q})$ (as topological groups) if and only if there is a non-split exact sequence

$$
0 \rightarrow \hat{\mathbf{Z}} \xrightarrow{\iota} G \xrightarrow{\pi} \hat{\mathbf{Z}}^{*} \rightarrow 1
$$

of profinite groups such that

$$
\forall a \in \hat{\mathbf{Z}}, \gamma \in G: \gamma \cdot \iota(a) \cdot \gamma^{-1}=\iota(\pi(\gamma) \cdot a)
$$

Arithmetic geometry

Given $f_{1}, \ldots, f_{k} \in \mathbf{Z}\left[X_{1}, \ldots, X_{n}\right]$, one wants to solve the system $f_{1}(x)=\ldots=f_{k}(x)=0$ in $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{Z}^{n}$.

Theorem. (a) There is a solution $x \in \mathbf{Z}^{n} \Rightarrow$ for each $m \in \mathbf{Z}_{>0}$ there is a solution modulo $m \Leftrightarrow$ there is a solution $x \in \hat{\mathbf{Z}}^{n}$.
(b) It is decidable whether a given system has a solution $x \in \hat{\mathbf{Z}}^{n}$.

p-adic numbers

Let p be prime. The ring of p-adic integers is

$$
\mathbf{Z}_{p}=\left\{\left(b_{i}\right)_{i=0}^{\infty} \in \prod_{i=0}^{\infty}\left(\mathbf{Z} / p^{i} \mathbf{Z}\right): i \leq j \Rightarrow b_{j} \equiv b_{i} \bmod p^{i}\right\}
$$

Just as $\hat{\mathbf{Z}}$, it is a compact Hausdorff totally disconnected topological ring.

It is also a principal ideal domain, with $p \mathbf{Z}_{p}$ as its only non-zero prime ideal. Its field of fractions is written \mathbf{Q}_{p}.

All ideals of \mathbf{Z}_{p} are closed, and of the form $p^{h} \mathbf{Z}_{p}$ with $h \in \mathbf{Z}_{\geq 0} \cup\{\infty\}$, where $p^{\infty} \mathbf{Z}_{p}=\{0\}$.

The Chinese remainder theorem

For $n=\prod_{p \text { prime }} p^{i(p)}$ one has

$$
\mathbf{Z} / n \mathbf{Z} \cong \prod_{p \text { prime }}\left(\mathbf{Z} / p^{i(p)} \mathbf{Z}\right) \quad \text { (as rings) }
$$

In the limit:

$$
\hat{\mathbf{Z}} \cong \prod_{p \text { prime }} \mathbf{Z}_{p} \quad \text { (as topological rings). }
$$

For each p, the projection map $\hat{\mathbf{Z}} \rightarrow \mathbf{Z}_{p}$ induces a ring homomorphism $\pi_{p}: \hat{\mathbf{Q}} \rightarrow \mathbf{Q}_{p}$.

Profinite number theory

The isomorphism $\hat{\mathbf{Z}} \cong \prod_{p} \mathbf{Z}_{p}$ reduces most questions that one may ask about $\hat{\mathbf{Z}}$ to similar questions about the much better behaved rings \mathbf{Z}_{p}.

Profinite number theory studies the exceptions. Many of these are caused by the set \mathcal{P} of primes being infinite.

Ideals of $\hat{\mathbf{Z}}$

For an ideal $\mathfrak{a} \subset \hat{\mathbf{Z}}=\prod_{p} \mathbf{Z}_{p}$, one has:
\mathfrak{a} is closed $\Leftrightarrow \mathfrak{a}$ is finitely generated $\Leftrightarrow \mathfrak{a}$ is principal

$$
\Leftrightarrow \mathfrak{a}=\prod_{p} \mathfrak{a}_{p} \text { where each } \mathfrak{a}_{p} \subset \mathbf{Z}_{p} \text { an ideal. }
$$

The set of closed ideals of $\hat{\mathbf{Z}}$ is in bijection with the set $\left\{\prod_{p} p^{h(p)}: h(p) \in \mathbf{Z}_{\geq 0} \cup\{\infty\}\right\}$ of Steinitz numbers.

Most ideals of $\hat{\mathbf{Z}}$ are not closed.

The spectrum and ultrafilters

The spectrum Spec R of a commutative ring R is its set of prime ideals. Example: $\operatorname{Spec} \mathbf{Z}_{p}=\left\{\{0\}, p \mathbf{Z}_{p}\right\}$.

With each $\mathfrak{p} \in \operatorname{Spec} \hat{\mathbf{Z}}$ one associates the ultrafilter

$$
\Upsilon(\mathfrak{p})=\left\{S \subset \mathcal{P}: e_{S} \in \mathfrak{p}\right\}
$$

on the set \mathcal{P} of primes, where $e_{S} \in \prod_{p \in \mathcal{P}} \mathbf{Z}_{p}=\hat{\mathbf{Z}}$ has coordinate 0 at $p \in S$ and 1 at $p \notin S$.

Then \mathfrak{p} is closed if and only if $\Upsilon(\mathfrak{p})$ is principal, and

$$
\Upsilon(\mathfrak{p})=\Upsilon(\mathfrak{q}) \Leftrightarrow \mathfrak{p} \subset \mathfrak{q} \text { or } \mathfrak{q} \subset \mathfrak{p} .
$$

The logarithm

$u \in \mathbf{R}_{>0} \Rightarrow \log u=\left(\frac{\mathrm{d}}{\mathrm{d} x} u^{x}\right)_{x=0}=\lim _{\epsilon \rightarrow 0} \frac{u^{\epsilon}-1}{\epsilon}$.
Analogously, define log: $\hat{\mathbf{Z}}^{*} \rightarrow \hat{\mathbf{Z}}$ by

$$
\log u=\lim _{n \rightarrow \infty} \frac{u^{n!}-1}{n!} .
$$

This is a well-defined continuous group homomorphism.
Its kernel is $\hat{\mathbf{Z}}_{\text {tor }}^{*}$, which is the closure of the set of elements of finite order in $\hat{\mathbf{Z}}^{*}$.

Its image is $2 \mathrm{~J}=\{2 x: x \in \mathrm{~J}\}$, where $\mathrm{J}=\bigcap_{p} p \hat{\mathbf{Z}}$ is the Jacobson radical of $\hat{\mathbf{Z}}$.

Structure of $\hat{\mathbf{Z}}^{*}$

The logarithm fits in a commutative diagram

of profinite groups, where the other horizontal maps are the natural ones, the rows are exact, and the vertical maps are isomorphisms.

Corollary: $\hat{\mathbf{Z}}^{*} \cong(\hat{\mathbf{Z}} / 2 \mathrm{~J})^{*} \times 2 \mathrm{~J}$ (as topological groups).

More on $\hat{\mathbf{Z}}^{*}$

Less canonically, with $\mathrm{A}=\prod_{n \geq 1}(\mathbf{Z} / n \mathbf{Z})$:

$$
\begin{aligned}
& 2 \mathrm{~J} \cong \hat{\mathbf{Z}} \\
&(\hat{\mathbf{Z}} / 2 \mathrm{~J})^{*} \cong(\mathbf{Z} / 2 \mathbf{Z}) \times \prod_{p}(\mathbf{Z} /(p-1) \mathbf{Z}) \cong \mathrm{A} \\
& \hat{\mathbf{Z}}^{*} \cong \mathrm{~A} \times \hat{\mathbf{Z}}
\end{aligned}
$$

as topological groups, and

$$
\hat{\mathbf{Z}}^{*} \cong \mathrm{~A}
$$

as groups.

Power series expansions

The inverse isomorphisms

$$
\begin{aligned}
& \log : 1+2 \mathrm{~J} \xrightarrow{\sim} 2 \mathrm{~J} \\
& \exp : 2 \mathrm{~J} \xrightarrow{\sim} 1+2 \mathrm{~J}
\end{aligned}
$$

are given by power series expansions

$$
\log (1-x)=-\sum_{n=1}^{\infty} \frac{x^{n}}{n}, \quad \exp x=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

that converge for all $x \in 2 \mathrm{~J}$.
The logarithm is analytic on all of $\hat{\mathbf{Z}}^{*}$ in a weaker sense.

Analyticity

Let $x_{0} \in D \subset \hat{\mathbf{Q}}$. We call $f: D \rightarrow \hat{\mathbf{Q}}$ analytic in x_{0} if there is a sequence $\left(a_{n}\right)_{n=0}^{\infty} \in \hat{\mathbf{Q}}^{\infty}$ such that one has

$$
f(x)=\sum_{n=0}^{\infty} a_{n} \cdot\left(x-x_{0}\right)^{n}
$$

in the sense that for each prime p there is a neighborhood U of x_{0} in D such that for all $x \in U$ the equality

$$
\pi_{p}(f(x))=\sum_{n=0}^{\infty} \pi_{p}\left(a_{n}\right) \cdot\left(\pi_{p}(x)-\pi_{p}\left(x_{0}\right)\right)^{n}
$$

is valid in the topological field \mathbf{Q}_{p}.

Examples of analytic functions

The map $\log : \hat{\mathbf{Z}}^{*} \rightarrow \hat{\mathbf{Z}} \subset \hat{\mathbf{Q}}$ is analytic in each $x_{0} \in \hat{\mathbf{Z}}^{*}$, with expansion

$$
\log x=\log x_{0}-\sum_{n=1}^{\infty} \frac{\left(x_{0}-x\right)^{n}}{n \cdot x_{0}^{n}} .
$$

For each $u \in \hat{\mathbf{Z}}^{*}$, the map

$$
\hat{\mathbf{Z}} \rightarrow \hat{\mathbf{Z}}^{*} \subset \hat{\mathbf{Q}}, \quad x \mapsto u^{x}
$$

is analytic in each $x_{0} \in \hat{\mathbf{Z}}$, with expansion

$$
u^{x}=\sum_{n=0}^{\infty} \frac{(\log u)^{n} \cdot u^{x_{0}} \cdot\left(x-x_{0}\right)^{n}}{n!} .
$$

A Fibonacci example

Define $F: \mathbf{Z}_{\geq 0} \rightarrow \mathbf{Z}_{\geq 0}$ by

$$
F(0)=0, \quad F(1)=1, \quad F(n+2)=F(n+1)+F(n) .
$$

Theorem. The function F has a unique continuous extension $\hat{\mathbf{Z}} \rightarrow \hat{\mathbf{Z}}$, and it is analytic in each $x_{0} \in \hat{\mathbf{Z}}$.

Notation: F.
For $n \in \mathbf{Z}$, one has

$$
F(n)=n \Leftrightarrow n \in\{0,1,5\} .
$$

Up to eleven

One has $\#\{x \in \hat{\mathbf{Z}}: F(x)=x\}=11$.
The only even fixed point of F is 0 , and for each $a \in\{1,5\}, b \in\{-5,-1,0,1,5\}$ there is a unique fixed point $z_{a, b}$ with

$$
z_{a, b} \equiv a \bmod \bigcap_{n=0}^{\infty} 6^{n} \hat{\mathbf{Z}}, \quad z_{a, b} \equiv b \bmod \bigcap_{n=0}^{\infty} 5^{n} \hat{\mathbf{Z}} .
$$

Examples: $z_{1,1}=1, z_{5,5}=5$.
Illustration by Willem Jan Palenstijn

Graphing the fixed points

The graph of $a \mapsto F(a)$ is shown in orange/red/brown.
Intersecting the graph with the diagonal one obtains the fixed points 0 and $z_{a, b}$, for $a=1,5, b=-5,-1,0,1,5$.

Surprise: one has $z_{5,-5}^{2}-25=\sum_{i=1}^{\infty} c_{i}$! with $c_{i}=0$ for $i \leq 200$ and $c_{201} \neq 0$.

Larger cycles

I believe:

$$
\begin{gathered}
\#\{x \in \hat{\mathbf{Z}}: F(F(x))=x\}=21 \\
\#\left\{x \in \hat{\mathbf{Z}}: F^{n}(x)=x\right\}<\infty \quad \text { for each } n \in \mathbf{Z}_{>0}
\end{gathered}
$$

Question: does F have cycles of length greater than 2 ?

Other linear recurrences

If $E: \mathbf{Z}_{\geq 0} \rightarrow \mathbf{Z}, t \in \mathbf{Z}_{>0}, d_{0}, \ldots, d_{t-1} \in \mathbf{Z}$ satisfy

$$
\begin{gathered}
\forall n \in \mathbf{Z}_{\geq 0}: E(n+t)=\sum_{i=0}^{t-1} d_{i} \cdot E(n+i), \\
d_{0} \in\{1,-1\},
\end{gathered}
$$

then E has a unique continuous extension $\hat{\mathbf{Z}} \rightarrow \hat{\mathbf{Z}}$. It is analytic in each $x_{0} \in \hat{\mathbf{Z}}$.

Finite cycles

Suppose also $X^{t}-\sum_{i=0}^{t-1} d_{i} X^{i}=\prod_{i=1}^{t}\left(X-\alpha_{i}\right)$, where

$$
\begin{gathered}
\alpha_{1}, \ldots, \alpha_{t} \in \mathbf{Q}(\sqrt{\mathbf{Q}}), \\
\alpha_{j}^{24} \neq \alpha_{k}^{24} \quad(1 \leq j<k \leq t) .
\end{gathered}
$$

Tentative theorem. If $n \in \mathbf{Z}_{>0}$ is such that the set

$$
S_{n}=\left\{x \in \hat{\mathbf{Z}}: E^{n}(x)=x\right\}
$$

is infinite, then $S_{n} \cap \mathbf{Z}_{\geq 0}$ contains an infinite arithmetic progression.
This would imply that $\left\{x \in \hat{\mathbf{Z}}: F^{n}(x)=x\right\}$ is finite for each $n \in \mathbf{Z}_{>0}$.

Who's who

Fibonacci, Italian mathematician, $\sim 1170-\sim 1250$.
Évariste Galois, French mathematician, 1811-1832.
Ferdinand Georg Frobenius, German mathematician, 1849-1917.
Felix Hausdorff, German mathematician, 1868-1942.
Ernst Steinitz, German mathematician, 1871-1928.
Nathan Jacobson, American mathematician, 1910-1999.
Willem Jan Palenstijn, Dutch mathematician, 1980.
Abtien Javanpeykar, Dutch mathematics student, 1989.
Carlo Pagano, Italian mathematics student, 1990.

