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Elliptic curves

“The theory of elliptic curves is a showpiece of modern
mathematics.”

Elliptic curves play a key role both in the proof of
Fermat’s Last Theorem and in the construction of the
best cryptographic schemes available.

Undergraduates have good reasons to wish to know more
about elliptic curves. What can we teach them?
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The first non-trivial theorem

Let k be a field. An elliptic curve over k is a “smooth
curve” defined by an equation of the form

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3

with all ai ∈ k.

Fact. The set of points in the “projective plane” over k
that satisfy the equation has a “natural addition law” that
turns it into an abelian group.

To be done:

1: Turn the Fact into a Theorem: define everything!

2: Prove the Theorem.
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What I shall do

1: I will briefly recall the algebraic definitions of the
geometric terms to be used. A good reference: Ideals,
varieties and algorithms, by Cox, Little, & O’Shea.
I will define the addition law.

2: I will outline a proof that we do get an abelian group.
The proof depends on basic properties of commutative
rings. I shall use a ring that has a formal resemblance to
the ring Z[i] of Gaussian integers.

Promise: all details I omit are indeed details.
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Zero sets of polynomials

Let k be a field with algebraic closure k̄, and n ∈ Z≥0.
Projective n-space over k is

Pn(k) = (kn+1\{0})/k∗.
For F ∈ k[X0, . . . , Xn] non-zero and homogeneous, put

Z(F ) = {(x0 : . . . : xn) ∈ Pn(k̄) : F (x0, . . . , xn) = 0}.
It is a hypersurface of degree degF in Pn(k̄), defined
over k.

If n = 1, then Z(F ) consists of degF points, counting
multiplicities: Z(F ) = {P1, . . . , PdegF}. The bold-faced
braces indicate that this is a set with multiplicities.
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Plane curves

Now let n = 2, and write X, Y , Z for X0, X1, X2.

A hypersurface in P2(k̄) is called a plane curve, and if
the degree is 1 it is called a line:

L = Z(aX + bY + cZ) with a, b, c not all 0.

One may identify a line L with P1(k̄). If aX + bY + cZ
does not divide F , then L∩ Z(F ) will be identified with a
hypersurface of degree degF in P1(k̄), so it consists of
degF points: L ∩ Z(F ) = {P1, . . . , PdegF}.
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Non-singular points

Let F ∈ k[X, Y, Z] be non-zero and homogeneous, with
partial derivatives FX , FY , FZ . We call a point
P = (x : y : z) ∈ Z(F ) non-singular if not all of

a = FX(x, y, z), b = FY (x, y, z) c = FZ(x, y, z)

are zero. In that case L = Z(aX + bY + cZ) is the unique
tangent line to Z(F ) through P , in the sense that P is a
point of L ∩ Z(F ) of multiplicity at least 2.

The curve Z(F ) is called smooth if all P ∈ Z(F ) are
non-singular.
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Weierstrass curves

Let k be a field. We call a polynomial W of the form

Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X2Z − a4XZ2 − a6Z3

with all ai ∈ k a Weierstrass polynomial over k. The
plane curve Z(W ) of degree 3 is called a Weierstrass
curve over k. It is an elliptic curve if it is smooth.

Let E = Z(W ) be a Weierstrass curve over k. Write

E(k) = E ∩Pn(k),

E(k)ns = {non-singular points on E(k)}.
Note: O = (0 : 1 : 0) ∈ E(k)ns.
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The chord and tangent process

Let E be a Weierstrass curve over a field k.

Theorem. Let L be a line in P2(k̄) with L ∩ E =
{P,Q,R}. Suppose that P and Q belong to E(k)ns. Then
so does R.

Put P +Q = S if there are lines L and M in P2(k̄) such
that L ∩ E = {P,Q,R} and M ∩ E = {O,R, S}. This is
a well-defined operation on E(k)ns!

Theorem. The operation + makes E(k)ns into an
abelian group with neutral element O.
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Two examples

Put k = F2 = Z/2Z, and let E1 and E2 be the
Weierstrass curves over k defined by

W1 = Y 2Z +XY Z −X3 −X2Z,

W2 = Y 2Z +XY Z −X3 −XZ2.

Then E1(k) and E2(k) both consist of the four points

(0 : 1 : 0), (0 : 0 : 1), (1 : 0 : 1), (1 : 1 : 1).

The point (0 : 0 : 1) is singular on E1 and non-singular on
E2, and the other points are non-singular on both.

The group E1(k)ns consists of three collinear points, and
is cyclic of order 3. The group E2(k)ns is cyclic of order 4.
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Infinite and finite points

Generally, O = (0 : 1 : 0) is the only point on E(k) with
z = 0. It is non-singular, with tangent line Z(Z), and
Z(Z) ∩ E(k) = {O,O,O}.

A “finite” point (x : y : 1) is on E(k) if and only if
w = Y 2 + a1XY + a3Y −X3 − a2X2 − a4X − a6 vanishes
in (x, y).

The point (0 : 0 : 1) is a singular point on E(k) if and
only if w is in the k[X, Y ]-ideal (X2, XY, Y 2) = (X, Y )2.

Likewise, (x : y : 1) is a singular point on E(k) if and
only if w ∈ (X − x, Y − y)2.
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The hero of the story

We write A = k[X, Y ]/(w), which is a commutative ring
containing k.

Each finite (x : y : 1) ∈ E(k) gives a ring homomorphism
ϕ : A→ k with X 7→ x, Y 7→ y, and an ideal m = kerϕ.

The set E(k)\{O} is in bijection with the set of A-ideals
m with dimk(A/m) = 1.

The set E(k)ns\{O} is in bijection with the set of
A-ideals m with dimk(A/m) = dimk(m/m

2) = 1.

Hence E(k)ns is in bijection with the set of A-ideals m
with dimk(A/m) = dimk(m/m

2) ≤ 1.
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Euclidean rings

The ring Z comes with the function Z→ Z≥0, n 7→ |n|. It
satisfies

|nm| = |n| · |m|, |n| = #(Z/nZ) (for n 6= 0).

For a field k, the polynomial ring k[X] comes with the
function deg : k[X]\{0} → Z≥0. It satisfies

deg(fg) = deg f + deg g, deg f = dimk(k[X]/(f))

because 1, X, . . . , X(deg f)−1 yield a k-basis for k[X]/(f).
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Gaussian integers

The ring of Gaussian integers is

Z[i] = {a+ bi : a, b ∈ Z}.
It has a ring automorphism ¯ defined by a+ bi = a− bi,
and a norm map Z[i]→ Z sending α = a+ bi to
αᾱ = a2 + b2.

The norm map makes Z[i] into a Euclidean ring.
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The counting norm

Theorem. One has #Z[i]/αZ[i] = αᾱ for α 6= 0.

Proof. Put N(α) = #Z[i]/αZ[i]. One has:

• N(α) = N(ᾱ) because #Z[i]/αZ[i] ∼= #Z[i]/ᾱZ[i].

• N(m) = m2 for m ∈ Z\{0} because

Z[i]/mZ[i] ∼= Z/mZ× Z/mZ as groups.

• N(αβ) = N(α)N(β) because of the exact sequence

0→ Z[i]/αZ[i]
β−→Z[i]/αβZ[i]→ Z[i]/βZ[i]→ 0.

Now N(α)2 = N(α)N(ᾱ) = N(αᾱ) = (αᾱ)2, done!
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An analogous ring

One has

Z[i] ∼= Z[Y ]/(Y 2 + 1), Z[i] = Z⊕ Zi, i2 = −1.

With w = Y 2 + a1XY + a3Y −X3 − a2X2 − a4X − a6 we
defined

A = k[X, Y ]/(w).

Write w = Y 2 − uY − v with u, v ∈ k[X]. Then if Y
denotes the coset Y + (w), one has

A = k[X][Y ]/(Y 2 − uY − v) = k[X]⊕ k[X]Y,

Y2 = v + uY, deg u ≤ 1, deg v = 3.
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The counting norm again

Analogously to Y 2 + 1 = (Y − i)(Y − ı̄), one has

Y 2 − uY − v = (Y − Y)(Y − Ȳ),

where Ȳ = u− Y. This gives rise to a ring automorphism

¯ : A→ A, f + gY = f + gȲ (f, g ∈ k[X])

and to a norm map A→ k[X] sending α = f + gY ∈ A
to αᾱ = f 2 + fgu− g2v ∈ k[X].

Theorem. One has dimk(A/αA) = deg(αᾱ) for α 6= 0.

This is proved exactly as for Z[i]!
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The degree of the norm

For α = f + gY ∈ A one has

deg(αᾱ) = deg(f 2+fgu−g2v) = max{2 deg f, 3+2 deg g}.
It follows that A is a domain. Also:

Theorem. The elements e0, e2, e3, e4, . . . of A defined by

e2j = Xj, e3+2j = XjY (j ≥ 0)

form a basis of A over k, and for α =
∑

i 6=1 ciei ∈ A (with
ci ∈ k not all zero), one has deg(αᾱ) = max{i : ci 6= 0}.

The absence of e1 implies that A is not Euclidean.
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Poor man’s Riemann–Roch

Theorem. For each ideal a of A there is a unique
principal ideal αA ⊂ a such that dimk(a/αA) ≤ 1.

Outline of proof. First show that dimk(A/a) = m (say)
is finite if a 6= 0. The m+ 1 elements e0, e2, . . . , em+1

become linearly dependent in A/a, so some non-zero
α =

∑
16=i≤m+1 ciei is in a, and then dimk(A/αA) =

max{i : ci 6= 0} ≤ m+ 1. This proves existence. One
proves uniqueness similarly.

One can deduce: A is a PID if and only if E(k) = {O}.

The group law on elliptic curves Hendrik Lenstra



The Picard group

The Picard group PicB of a domain B is the set of
“equivalence” classes [a] of “invertible” ideals a ⊂ B,
with multiplication [a][b] = [ab]. It is abelian.

Here a is invertible if ab = αB for some ideal b and
some non-zero α ∈ B.

Two invertible ideals a, b are equivalent if there are
non-zero α, β ∈ B with βa = αb.

We shall show that E(k)ns is a group by exhibiting a
bijection E(k)ns ∼= PicA.
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Putting things together

Reminder : E(k)ns is in bijection with the set S of
A-ideals m with dimk(A/m) = dimk(m/m

2) ≤ 1.

We make S (and hence E(k)ns) into a group by
proving that m 7→ [m] defines a bijection S → PicA.

Ingredients of the proof:

• a technical lemma showing that an A-ideal m with
dimk(A/m) = 1 is in S if and only if m is invertible;

• poor man’s Riemann–Roch, which shows that for any
[a] ∈ PicA there is a unique m ∈ S with [a][m] = 1.
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The technical lemma

Lemma. Let m = (α, β) be a maximal ideal of a
domain B. Then: m is invertible ⇔ dimB/m(m/m2) = 1.

⇒: use that a 7→ am gives a bijection {ideals a between
B and m} → {ideals between m and m2}.

⇐: if (say) m = αB + m2 then β ∈ αB + m2 = (α, β2),
so there is γ ∈ B with β ≡ γβ2 mod αB, and then
n = (α, 1− γβ) satisfies mn = αB.
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Summary of the group law

To add P , Q in the group E(k)ns:

• find the corresponding A-ideals m, n ∈ S;

• compute the ideal product mn = a in A;

• determine the unique l ∈ S such that al is principal;

• find the point in E(k)ns corresponding to l̄ ∈ S.

That is P +Q! Since all proofs are completely explicit,
one verifies without trouble that P +Q can equivalently
be obtained by the chord and tangent process.
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Tableau de la troupe (1)

Euclid of Alexandria, Greek mathematician, ∼300 BC.

Pierre de Fermat, French mathematician, 1601–1665.

Carl Friedrich Gauss, German mathematician,
1777–1855.

Niels Henrik Abel, Norwegian mathematician, 1802–1829.

Karl Weierstrass, German mathematician, 1815–1897.

Bernhard Riemann, German mathematician, 1826–1866.
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Tableau de la troupe (2)

Gustav Roch, German mathematician, 1839–1866.

Émile Picard, French mathematician, 1856–1941.

David Cox, American mathematician, 1948.

John Little, American mathematician, 1956.

Donal O’Shea, Canadian mathematician, 1952.
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