The combinatorial Nullstellensatz

Hendrik Lenstra

Mathematisch Instituut Universiteit Leiden

The theme of the talk

Notation: F is a field, $n \in \mathbb{Z}_{>0}$, and $F[X_1, \ldots, X_n]$ is the polynomial ring in n indeterminates X_1, \ldots, X_n over F.

Each
$$g \in F[X_1, ..., X_n]$$
 gives rise to a function $F^n \to F$, $x = (x_1, ..., x_n) \mapsto g(x) = g(x_1, ..., x_n)$.

If F is finite, there are $g_1 \neq g_2$ that give rise to the same function, but if F is infinite, then this cannot happen.

The *combinatorial Nullstellensatz* is a quantitative refinement of the latter assertion.

Non-vanishing polynomials

Theorem. If $g \in F[X_1, ..., X_n]$ is non-zero, and $\#F > \deg g$, then g does not vanish on F^n . More precisely, if $S_i \subset F$ satisfies $\#S_i > \deg_{X_i} g$ for $1 \le i \le n$, then g does not vanish on $S_1 \times ... \times S_n$.

For n=1 this is because a polynomial of degree d has at most d zeroes in a field. For n>1 one applies induction.

A theorem about matrices

Matrix theorem. Let $k \in \mathbb{Z}_{>0}$, and let A_1, \ldots, A_n be a basis for the F-vector space M(k, F) of $k \times k$ matrices over F (so $n = k^2$). Then the additive
subgroup of M(k, F) generated by A_1, \ldots, A_n contains an invertible matrix.

In other words, one has $\det(\sum_{i=1}^n m_i A_i) \neq 0$ for certain m_1, \ldots, m_n that are in **Z** if char F = 0 and in **Z**/p**Z** if char F = p > 0.

An example

The standard basis of M(k, F) consists of the k^2 matrices that have one entry equal to 1 and all others equal to 0.

The additive subgroup generated by this basis equals $M(k, \mathbf{Z})$ or $M(k, \mathbf{Z}/p\mathbf{Z})$. It contains many invertible matrices, for example the $k \times k$ identity matrix I_k .

For a general basis A_1, \ldots, A_n , we start by expressing $\det(\sum_{i=1}^n m_i A_i)$ as a polynomial in m_1, \ldots, m_n .

An attempted proof

Put

$$g = \det\left(\sum_{i=1}^{n} X_i A_i\right) \in F[X_1, \dots, X_n].$$

This is a homogeneous polynomial of degree k. It is not identically zero, since if $\sum x_i A_i = I_k$, then $g(x_1, \ldots, x_n) = \det(I_k) = 1 \neq 0$.

If $S \subset F$ satisfies #S > k, then g does not vanish on $S \times S \times \ldots \times S$. With $S = \mathbf{Z}$ or $\mathbf{Z}/p\mathbf{Z}$, this proves the theorem if $\operatorname{char} F = 0$ or $\operatorname{char} F = p > k$.

The standard basis

If A_1, \ldots, A_n is the standard basis of M(k, F), then (reindexing the indeterminates) we have

$$g = \det(X_{ij})_{i,j=1}^k,$$

which is of degree 1 in each variable.

So in that case the proof does go through.

The combinatorial Nullstellensatz

Theorem (Noga Alon, 1999). Let $d_1, \ldots, d_n \in \mathbf{Z}_{\geq 0}$ and $g \in F[X_1, \ldots, X_n]$. Suppose that g has a non-zero coefficient at $X_1^{d_1} \cdots X_n^{d_n}$ and that $d_1 + d_2 + \ldots + d_n = \deg g$. Let $S_i \subset F$ satisfy $\#S_i > d_i$ for $1 \leq i \leq n$. Then g does not vanish on $S_1 \times \ldots \times S_n$.

Alon proves this using an elementary special case of Hilbert's Nullstellensatz. There are several other easy proofs in the literature, including a very brief one by T. Tao.

Applications

The combinatorial Nullstellensatz has seen many dramatic applications in *extremal graph theory* and arithmetic combinatorics.

Examples today: a quick proof of the *theorem of* Cauchy–Davenport, a proof of the theorem on matrices, and an application to the *normal basis theorem*.

The Cauchy–Davenport theorem

Theorem (Cauchy, 1813; Davenport, 1935). Let p be prime, let A, $B \subset \mathbf{Z}/p\mathbf{Z}$ be non-empty, and put $A + B = \{a + b : a \in A, b \in B\}$. Then $\#(A + B) \ge \min\{\#A + \#B - 1, p\}$.

Note that equality holds if A and B are arithmetic progressions with the same step.

Proof if #A + #B > p: for each $c \in \mathbf{Z}/p\mathbf{Z}$ the sets A and c - B must intersect, so $A + B = \mathbf{Z}/p\mathbf{Z}$.

The Cauchy–Davenport theorem

Theorem (Cauchy, 1813; Davenport, 1935). Let p be prime, let A, $B \subset \mathbf{Z}/p\mathbf{Z}$ be non-empty, and put $A + B = \{a + b : a \in A, b \in B\}$. Then $\#(A + B) \ge \min\{\#A + \#B - 1, p\}$.

Proof if $\#A + \#B \leq p$. Suppose not. Pick $C \subset \mathbf{Z}/p\mathbf{Z}$ with $A + B \subset C$ and #C = #A + #B - 2. Then $g = \prod_{c \in C} (X_1 + X_2 - c)$ vanishes on $A \times B$, has degree #A + #B - 2, and has a nonzero coefficient at $X_1^{\#A-1}X_2^{\#B-1}$, contradicting the combinatorial Nullstellensatz.

The matrix theorem

Matrix theorem. Let $k \in \mathbb{Z}_{>0}$, and let A_1, \ldots, A_n be a basis for the F-vector space M(k, F) of $k \times k$ matrices over F (so $n = k^2$). Then the additive
subgroup of M(k, F) generated by A_1, \ldots, A_n contains an invertible matrix.

We saw already that we may assume char F = p > 0, and that it suffices to show that $g = \det\left(\sum_{i=1}^{n} X_i A_i\right)$ does not vanish on $(\mathbf{Z}/p\mathbf{Z}) \times (\mathbf{Z}/p\mathbf{Z}) \times \ldots \times (\mathbf{Z}/p\mathbf{Z})$. So we want to apply the combinatorial Nullstellensatz with all $S_i = \mathbf{Z}/p\mathbf{Z}$.

The combinatorial Nullstellensatz

Theorem. Let $d_1, \ldots, d_n \in \mathbf{Z}_{\geq 0}$ and $g \in F[X_1, \ldots, X_n]$. Suppose that g has a non-zero coefficient at $X_1^{d_1} \cdots X_n^{d_n}$ and that $d_1 + d_2 + \ldots + d_n = \deg g$. Let $S_i \subset F$ satisfy $\#S_i > d_i$ for $1 \leq i \leq n$. Then g does not vanish on $S_1 \times \ldots \times S_n$.

What we want

We want to show that $g = \det\left(\sum_{i=1}^n X_i A_i\right)$ has a term $cX_1^{d_1} \cdots X_n^{d_n}$ with $c \in F^*$ and all $d_i < p$.

If A_1, \ldots, A_n is the standard basis of M(k, F), then this is true, since each non-zero term is of the form $\pm X_1^{d_1} \cdots X_n^{d_n}$ with all $d_i \in \{0, 1\}$.

Why is it true in general?

A minor miracle

A minor miracle happens in the special case

$$char F = p > 0, \#S_i = p (1 \le i \le n)$$

of the combinatorial Nullstellensatz that we need.

A minor miracle

A minor miracle happens in the special case

$$char F = p > 0, \#S_i = p (1 \le i \le n).$$

Write \mathcal{D} for the set of $g \in F[X_1, \ldots, X_n]$ that are guaranteed not to vanish on any set of the form $S_1 \times \ldots \times S_n$ with $S_i \subset F$, $\#S_i = p$ for all i:

$$\mathcal{D} = \{ g \in F[X_1, \dots, X_n] : g \text{ has a term } cX_1^{d_1} \cdots X_n^{d_n}$$
 with $c \in F^*$, all $d_i < p$, and $\sum_i d_i = \deg g \}$.

Miracle: the set \mathcal{D} is invariant under invertible linear substitutions of the X_i .

Invertible linear substitutions

For an invertible matrix $C = (c_{ij}) \in M(n, F)$ and any $g \in F[X_1, \ldots, X_n]$, put $g_C = g(\sum_j c_{1j}X_j, \ldots, \sum_j c_{nj}X_j)$.

This defines a right action of the group GL(n, F) on the ring $F[X_1, \ldots, X_n]$.

Miracle: $g \in \mathcal{D} \Leftrightarrow g_C \in \mathcal{D}$.

Here we assume char F = p > 0, and

$$\mathcal{D} = \{ g \in F[X_1, \dots, X_n] : g \text{ has a term } cX_1^{d_1} \cdots X_n^{d_n}$$
 with $c \in F^*$, all $d_i < p$, and $\sum_i d_i = \deg g \}$.

Explaining the miracle away

Theorem: $g \in \mathcal{D} \Leftrightarrow g_C \in \mathcal{D}$.

Proof. Write lt g for the sum of the terms of degree deg g of g, and lt 0 = 0. Let I be the ideal (X_1^p, \ldots, X_n^p) . Then:

$$g \notin \mathcal{D} \Leftrightarrow \operatorname{lt} g \in I.$$

Now we have $lt(g_C) = (lt g)_C$ and $I_C = I$, the latter equality because p-th powering is additive and therefore

$$I = (h^p : h \in F \cdot X_1 + \ldots + F \cdot X_n).$$

This implies the theorem!

The moral of the miracle

If in the situation

$$char F = p > 0, \quad #S_i = p \quad (1 \le i \le n)$$

we want to check that g satisfies the condition of the combinatorial Nullstellensatz, we may subject the vectors in F^n to any coordinate transformation that we like.

In particular, in our matrix theorem, we may replace the basis A_1, \ldots, A_n of M(k, F) by the standard basis. Since in that case we know already that g satisfies the required condition, we are done!

The matrix theorem

Matrix theorem. Let $k \in \mathbb{Z}_{>0}$, and let A_1, \ldots, A_n be a basis for M(k, F) over F. Then the additive subgroup of M(k, F) generated by A_1, \ldots, A_n contains an invertible matrix

More matrices

Theorem. Let $k \in \mathbb{Z}_{>0}$, let A_1, \ldots, A_n be a basis for M(k, F) over F, and let $c \in F$. Then every coset of the additive subgroup of M(k, F) generated by A_1, \ldots, A_n contains a matrix B with $\det B \neq c$.

The proof is the same.

A ring-theoretic generalization

Let R be a ring of which the center contains F, and suppose $\dim_F R < \infty$.

Unit theorem. The additive subgroup of R generated by any F-basis for R contains an invertible element of R.

The proof is essentially by reduction to the case of matrix rings.

Further examples are the rings F^n with component-wise multiplication, and group rings F[G] of finite groups G.

The normal basis theorem

Theorem. Let $E \subset F$ be a finite Galois extension of fields, with Galois group G. Then there exists $\alpha \in F$ such that $(\sigma \alpha)_{\sigma \in G}$ is an E-basis of F. Moreover, such an α can be found in the additive subgroup generated by any E-basis of F.

The normal basis theorem for $E \subset F$ follows from the unit theorem for F[G].

Getting a normal basis from a unit

Define $\varphi \colon F \to F[G]$ by $\varphi(\alpha) = \sum_{\tau \in G} (\tau^{-1}\alpha)\tau$.

- φ is *E*-linear,
- $\varphi(\text{any } E\text{-basis of } F)$ is an F-basis of F[G],
- $\varphi(\sigma\alpha) = \sigma \cdot \varphi(\alpha)$ for all $\sigma \in G$, $\alpha \in F$.

It follows that $(\sigma \alpha)_{\sigma \in G}$ is an *E*-basis of *F* if and only if $\varphi(\alpha)$ is invertible in F[G].

Now one can apply the unit theorem to F[G] to obtain the normal basis theorem for $E \subset F$.

Literature

Noga Alon, Combinatorial Nullstellensatz, 1999.

Martin Heemskerk, Basisuitbreidingen en de combinatorische Nullstellensatz, 2014, http://www.math.leidenuniv.nl/nl/theses/515/

Terence Tao, Algebraic combinatorial geometry: the polynomial method in arithmetic combinatorics, incidence combinatorics, and number theory, 2014.

Today's suspects

Augustin-Louis Cauchy, French mathematician, 1789–1857.

Évariste Galois, French mathematician, 1811–1832.

David Hilbert, German mathematician, 1862–1943.

Harold Davenport, English mathematician, 1907–1969.

Noga Alon, Israeli mathematician, 1956.

Terence Tao, Australian-American mathematician, 1975.

Martin Heemskerk, Dutch mathematics student, 1993.