The combinatorial Nullstellensatz

Hendrik Lenstra

Mathematisch Instituut
Universiteit Leiden

The theme of the talk

Notation: F is a field, $n \in \mathbf{Z}_{>0}$, and $F\left[X_{1}, \ldots, X_{n}\right]$ is the polynomial ring in n indeterminates X_{1}, \ldots, X_{n} over F.

Each $g \in F\left[X_{1}, \ldots, X_{n}\right]$ gives rise to a function $F^{n} \rightarrow F$, $x=\left(x_{1}, \ldots, x_{n}\right) \mapsto g(x)=g\left(x_{1}, \ldots, x_{n}\right)$.

If F is finite, there are $g_{1} \neq g_{2}$ that give rise to the same function, but if F is infinite, then this cannot happen.

The combinatorial Nullstellensatz is a quantitative refinement of the latter assertion.

Non-vanishing polynomials

Theorem. If $g \in F\left[X_{1}, \ldots, X_{n}\right]$ is non-zero, and $\# F>\operatorname{deg} g$, then g does not vanish on F^{n}. More precisely, if $S_{i} \subset F$ satisfies $\# S_{i}>\operatorname{deg}_{X_{i}}$ g for $1 \leq i \leq n$, then g does not vanish on $S_{1} \times \ldots \times S_{n}$.

For $n=1$ this is because a polynomial of degree d has at most d zeroes in a field. For $n>1$ one applies induction.

A theorem about matrices

Matrix theorem. Let $k \in \mathbf{Z}_{>0}$, and let A_{1}, \ldots, A_{n} be a basis for the F-vector space $\mathrm{M}(k, F)$ of $k \times k$ matrices over F (so $n=k^{2}$). Then the additive subgroup of $\mathrm{M}(k, F)$ generated by A_{1}, \ldots, A_{n} contains an invertible matrix.

In other words, one has $\operatorname{det}\left(\sum_{i=1}^{n} m_{i} A_{i}\right) \neq 0$ for certain m_{1}, \ldots, m_{n} that are in \mathbf{Z} if char $F=0$ and in $\mathbf{Z} / p \mathbf{Z}$ if $\operatorname{char} F=p>0$.

An example

The standard basis of $\mathrm{M}(k, F)$ consists of the k^{2} matrices that have one entry equal to 1 and all others equal to 0 .

The additive subgroup generated by this basis equals $\mathrm{M}(k, \mathbf{Z})$ or $\mathrm{M}(k, \mathbf{Z} / p \mathbf{Z})$. It contains many invertible matrices, for example the $k \times k$ identity matrix I_{k}.

For a general basis A_{1}, \ldots, A_{n}, we start by expressing $\operatorname{det}\left(\sum_{i=1}^{n} m_{i} A_{i}\right)$ as a polynomial in m_{1}, \ldots, m_{n}.

An attempted proof

Put

$$
g=\operatorname{det}\left(\sum_{i=1}^{n} X_{i} A_{i}\right) \in F\left[X_{1}, \ldots, X_{n}\right] .
$$

This is a homogeneous polynomial of degree k. It is not identically zero, since if $\sum x_{i} A_{i}=I_{k}$, then $g\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}\left(I_{k}\right)=1 \neq 0$.

If $S \subset F$ satisfies $\# S>k$, then g does not vanish on $S \times S \times \ldots \times S$. With $S=\mathbf{Z}$ or $\mathbf{Z} / p \mathbf{Z}$, this proves the theorem if char $F=0$ or char $F=p>k$.

The standard basis

If A_{1}, \ldots, A_{n} is the standard basis of $\mathrm{M}(k, F)$, then (reindexing the indeterminates) we have

$$
g=\operatorname{det}\left(X_{i j}\right)_{i, j=1}^{k},
$$

which is of degree 1 in each variable.
So in that case the proof does go through.

The combinatorial Nullstellensatz

Theorem (Noga Alon, 1999). Let $d_{1}, \ldots, d_{n} \in \mathbf{Z}_{\geq 0}$ and $g \in F\left[X_{1}, \ldots, X_{n}\right]$. Suppose that g has a non-zero coefficient at $X_{1}^{d_{1}} \cdots X_{n}^{d_{n}}$ and that $d_{1}+d_{2}+\ldots+d_{n}$ $=\operatorname{deg} g$. Let $S_{i} \subset F$ satisfy $\# S_{i}>d_{i}$ for $1 \leq i \leq n$. Then g does not vanish on $S_{1} \times \ldots \times S_{n}$.

Alon proves this using an elementary special case of Hilbert's Nullstellensatz. There are several other easy proofs in the literature, including a very brief one by T. Tao.

Applications

The combinatorial Nullstellensatz has seen many dramatic applications in extremal graph theory and arithmetic combinatorics.

Examples today: a quick proof of the theorem of Cauchy-Davenport, a proof of the theorem on matrices, and an application to the normal basis theorem.

The Cauchy-Davenport theorem

Theorem (Cauchy, 1813; Davenport, 1935). Let p be prime, let $A, B \subset \mathbf{Z} / p \mathbf{Z}$ be non-empty, and put $A+B=\{a+b: a \in A, b \in B\}$. Then

$$
\#(A+B) \geq \min \{\# A+\# B-1, p\} .
$$

Note that equality holds if A and B are arithmetic progressions with the same step.

Proof if $\# A+\# B>p$: for each $c \in \mathbf{Z} / p \mathbf{Z}$ the sets A and $c-B$ must intersect, so $A+B=\mathbf{Z} / p \mathbf{Z}$.

The Cauchy-Davenport theorem

Theorem (Cauchy, 1813; Davenport, 1935). Let p be prime, let $A, B \subset \mathbf{Z} / p \mathbf{Z}$ be non-empty, and put $A+B=\{a+b: a \in A, b \in B\}$. Then

$$
\#(A+B) \geq \min \{\# A+\# B-1, p\} .
$$

Proof if $\# A+\# B \leq p$. Suppose not. Pick $C \subset \mathbf{Z} / p \mathbf{Z}$ with $A+B \subset C$ and $\# C=\# A+\# B-2$. Then $g=$ $\prod_{c \in C}\left(X_{1}+X_{2}-c\right)$ vanishes on $A \times B$, has degree $\# A+\# B-2$, and has a nonzero coefficient at $X_{1}^{\# A-1} X_{2}^{\# B-1}$, contradicting the combinatorial Nullstellensatz.

The matrix theorem

Matrix theorem. Let $k \in \mathbf{Z}_{>0}$, and let A_{1}, \ldots, A_{n} be a basis for the F-vector space $\mathrm{M}(k, F)$ of $k \times k$ matrices over F (so $n=k^{2}$). Then the additive subgroup of $\mathrm{M}(k, F)$ generated by A_{1}, \ldots, A_{n} contains an invertible matrix.

We saw already that we may assume char $F=p>0$, and that it suffices to show that $g=\operatorname{det}\left(\sum_{i=1}^{n} X_{i} A_{i}\right)$ does not vanish on $(\mathbf{Z} / p \mathbf{Z}) \times(\mathbf{Z} / p \mathbf{Z}) \times \ldots \times(\mathbf{Z} / p \mathbf{Z})$. So we want to apply the combinatorial Nullstellensatz with all $S_{i}=\mathbf{Z} / p \mathbf{Z}$.

The combinatorial Nullstellensatz

Theorem. Let $d_{1}, \ldots, d_{n} \in \mathbf{Z}_{\geq 0}$ and $g \in F\left[X_{1}, \ldots, X_{n}\right]$. Suppose that g has a non-zero coefficient at $X_{1}^{d_{1}} \cdots X_{n}^{d_{n}}$ and that $d_{1}+d_{2}+\ldots+d_{n}=\operatorname{deg} g$. Let $S_{i} \subset F$ satisfy $\# S_{i}>d_{i}$ for $1 \leq i \leq n$. Then g does not vanish on $S_{1} \times \ldots \times S_{n}$.

What we want

We want to show that $g=\operatorname{det}\left(\sum_{i=1}^{n} X_{i} A_{i}\right)$ has a term $c X_{1}^{d_{1}} \cdots X_{n}^{d_{n}}$ with $c \in F^{*}$ and all $d_{i}<p$. If A_{1}, \ldots, A_{n} is the standard basis of $\mathrm{M}(k, F)$, then this is true, since each non-zero term is of the form $\pm X_{1}^{d_{1}} \cdots X_{n}^{d_{n}}$ with all $d_{i} \in\{0,1\}$.

Why is it true in general?

A minor miracle

A minor miracle happens in the special case

$$
\operatorname{char} F=p>0, \quad \# S_{i}=p \quad(1 \leq i \leq n)
$$

of the combinatorial Nullstellensatz that we need.

A minor miracle

A minor miracle happens in the special case

$$
\operatorname{char} F=p>0, \quad \# S_{i}=p \quad(1 \leq i \leq n)
$$

Write \mathcal{D} for the set of $g \in F\left[X_{1}, \ldots, X_{n}\right]$ that are guaranteed not to vanish on any set of the form $S_{1} \times \ldots \times S_{n}$ with $S_{i} \subset F, \# S_{i}=p$ for all i :

$$
\begin{gathered}
\mathcal{D}=\left\{g \in F\left[X_{1}, \ldots, X_{n}\right]: g \text { has a term } c X_{1}^{d_{1}} \cdots X_{n}^{d_{n}}\right. \\
\left.\quad \text { with } c \in F^{*}, \text { all } d_{i}<p, \text { and } \sum_{i} d_{i}=\operatorname{deg} g\right\} .
\end{gathered}
$$

Miracle: the set \mathcal{D} is invariant under invertible linear substitutions of the X_{i}.

Invertible linear substitutions

For an invertible matrix $C=\left(c_{i j}\right) \in \mathrm{M}(n, F)$ and any $g \in F\left[X_{1}, \ldots, X_{n}\right]$, put $g_{C}=g\left(\sum_{j} c_{1 j} X_{j}, \ldots, \sum_{j} c_{n j} X_{j}\right)$. This defines a right action of the group $\mathrm{GL}(n, F)$ on the $\operatorname{ring} F\left[X_{1}, \ldots, X_{n}\right]$.

Miracle: $g \in \mathcal{D} \Leftrightarrow g_{C} \in \mathcal{D}$.
Here we assume char $F=p>0$, and

$$
\begin{gathered}
\mathcal{D}=\left\{g \in F\left[X_{1}, \ldots, X_{n}\right]: g \text { has a term } c X_{1}^{d_{1}} \cdots X_{n}^{d_{n}}\right. \\
\text { with } \left.c \in F^{*}, \text { all } d_{i}<p, \text { and } \sum_{i} d_{i}=\operatorname{deg} g\right\} .
\end{gathered}
$$

Explaining the miracle away

Theorem: $g \in \mathcal{D} \Leftrightarrow g_{C} \in \mathcal{D}$.
Proof. Write lt g for the sum of the terms of degree $\operatorname{deg} g$ of g, and lt $0=0$. Let I be the ideal $\left(X_{1}^{p}, \ldots, X_{n}^{p}\right)$. Then:

$$
g \notin \mathcal{D} \Leftrightarrow \operatorname{lt} g \in I .
$$

Now we have $\operatorname{lt}\left(g_{C}\right)=(\operatorname{lt} g)_{C}$ and $I_{C}=I$, the latter equality because p-th powering is additive and therefore

$$
I=\left(h^{p}: h \in F \cdot X_{1}+\ldots+F \cdot X_{n}\right) .
$$

This implies the theorem!

The moral of the miracle

If in the situation

$$
\operatorname{char} F=p>0, \quad \# S_{i}=p \quad(1 \leq i \leq n)
$$

we want to check that g satisfies the condition of the combinatorial Nullstellensatz, we may subject the vectors in F^{n} to any coordinate transformation that we like.

In particular, in our matrix theorem, we may replace the basis A_{1}, \ldots, A_{n} of $\mathrm{M}(k, F)$ by the standard basis. Since in that case we know already that g satisfies the required condition, we are done!

The matrix theorem

Matrix theorem. Let $k \in \mathbf{Z}_{>0}$, and let A_{1}, \ldots, A_{n} be a basis for $\mathrm{M}(k, F)$ over F. Then the additive subgroup of $\mathrm{M}(k, F)$ generated by A_{1}, \ldots, A_{n} contains an invertible matrix.

More matrices

Theorem. Let $k \in \mathbf{Z}_{>0}$, let A_{1}, \ldots, A_{n} be a basis for $\mathrm{M}(k, F)$ over F, and let $c \in F$. Then every coset of the additive subgroup of $\mathrm{M}(k, F)$ generated by A_{1}, \ldots, A_{n} contains a matrix B with $\operatorname{det} B \neq c$.

The proof is the same.

A ring-theoretic generalization

Let R be a ring of which the center contains F, and suppose $\operatorname{dim}_{F} R<\infty$.

Unit theorem. The additive subgroup of R generated by any F-basis for R contains an invertible element of R.

The proof is essentially by reduction to the case of matrix rings.

Further examples are the rings F^{n} with component-wise multiplication, and group rings $F[G]$ of finite groups G.

The normal basis theorem

Theorem. Let $E \subset F$ be a finite Galois extension of fields, with Galois group G. Then there exists $\alpha \in F$ such that $(\sigma \alpha)_{\sigma \in G}$ is an E-basis of F. Moreover, such an α can be found in the additive subgroup generated by any E-basis of F.

The normal basis theorem for $E \subset F$ follows from the unit theorem for $F[G]$.

Getting a normal basis from a unit

Define $\varphi: F \rightarrow F[G]$ by $\varphi(\alpha)=\sum_{\tau \in G}\left(\tau^{-1} \alpha\right) \tau$.

- φ is E-linear,
- $\varphi($ any E-basis of F) is an F-basis of $F[G]$,
- $\varphi(\sigma \alpha)=\sigma \cdot \varphi(\alpha)$ for all $\sigma \in G, \alpha \in F$.

It follows that $(\sigma \alpha)_{\sigma \in G}$ is an E-basis of F if and only if $\varphi(\alpha)$ is invertible in $F[G]$.

Now one can apply the unit theorem to $F[G]$ to obtain the normal basis theorem for $E \subset F$.

Literature

Noga Alon, Combinatorial Nullstellensatz, 1999.
Martin Heemskerk, Basisuitbreidingen en de combinatorische Nullstellensatz, 2014, http://www.math.leidenuniv.nl/nl/theses/515/

Terence Tao, Algebraic combinatorial geometry: the polynomial method in arithmetic combinatorics, incidence combinatorics, and number theory, 2014.

Today's suspects

Augustin-Louis Cauchy, French mathematician, 1789-1857.

Évariste Galois, French mathematician, 1811-1832.
David Hilbert, German mathematician, 1862-1943.
Harold Davenport, English mathematician, 1907-1969.
Noga Alon, Israeli mathematician, 1956.
Terence Tao, Australian-American mathematician, 1975.
Martin Heemskerk, Dutch mathematics student, 1993.

