Differential Equations, Dr. Wyels, Spring ‘00


Reduction of Order

Consider DE1:  
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1.
DE1 is linear / nonlinear because 
.

2.
DE1 is homogeneous/ nonhomogeneous because 
.

Complete the following steps.  (We’ll look at why these steps are effective shortly.)

3.
Verify that 
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 is a solution of DE1.

4.
Assume that there is another solution of DE1:  
[image: image3.wmf]1

2

)

(

y

x

u

y

=

, that is, 
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Your goal is to find 
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a)
Write 
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 and use the product rule to find 
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b)
Substitute y, 
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, and 
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 into DE1.  Then group terms and cancel as much as possible.  (You should get an equation of the form 
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c)
Make the substitution 
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 into what you have from b).  This turns DE1 into a linear first-order equation in w.  Solve it for w, then work backwards to get u.

5.
What did you get?  Can you work with what you have to find two linearly independent solutions to DE1?
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