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◦

Differentiate Early, Differentiate Often!
Robert Dawson (rdawson@cs.stmarys.ca), Saint Mary’s University, Halifax, Nova
Scotia, Canada B3H 3C3

In first-year calculus, constrained-optimization and related-rates word problems are
two of the biggest stumbling blocks. In this note, I contrast the methods suggested in
calculus textbooks for the solution of these two types of problems, and conclude that
a different approach to constrained-optimization problems, similar to that widely used
for related-rates problems, would be advantageous.

Let us first consider related-rates problems. Traditional textbooks (see, for instance,
Adams [1, p. 235]; Edwards and Penney [3, p. 193]; Finney, Weir, and Giordano [5,
p. 209]; Johnston and Mathews [6, p. 316]; Stewart [8, p. 258], and Strauss et al. [9,
p. 158]) introduce these shortly after implicit differentiation. These texts all suggest
that implicit differentiation of the equation relating the rates should be an early step
in the solution of such a problem. Nonetheless, many students, faced with a related-
rates problem, persistently avoid implicit differentiation by eliminating a variable. For
instance:

Problem 1. A ladder of length 5 m is sliding with one end on the ground and the
other on a vertical wall. The end on the ground is sliding away from the wall at a
constant rate of 1 m/sec. How fast is the end on the wall moving when it is 4 m off the
ground?

Solution A (standard). By the Pythagorean theorem, the distance x from the foot
of the wall to the ladder and the height y of the top of the ladder are linked by the
relation

x2 + y2 = 25; (1)

differentiating implicitly with respect to t yields

x dx/dt + y dy/dt = 0. (2)

We can now substitute the instantaneous value y = 4 into (1) to obtain x = 3; sub-
stituting these values and dx/dt = 1 into (2) we obtain 3 + 4dy/dt = 0, so that
dy/dt = −3/4 m/sec.

Solution B (avoiding implicit differentiation). Solving (1) for y, we obtain

y =
√

25 − x2. (3)

Differentiating with respect to x gives

dy

dx
= −2x

2
√

25 − x2
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and by the Chain Rule we have

dy

dt
= dy

dx

dx

dt
= −x√

25 − x2

dx

dt
.

Substituting the instantaneous value x = 3 and dx/dt = 1, we obtain the answer.

The second approach is more difficult. Moreover, it admits two sources of error
that are avoided by the first. The most common mistake on such a problem involves
“freezing” one or more instances of a variable by substituting an instantaneous value
before differentiation; the earlier the student differentiates, the less likely this is to
happen. The other standard mistake, of course, involves incorrect differentiation of the
comparatively complicated expression in (3).

All of this suggests that the traditional approach to related-rates problems is valid,
and that students should be strongly encouraged to follow it. Like many other instruc-
tors, I usually take the view that students who prefer to use a certain technique, and
get the right answer, should be permitted to do so. However, in this case, I feel that
students who insist on avoiding implicit differentiation are not making an informed
decision, even though they will probably be able to grind out the solutions to many
problems.

A few weeks after related rates (depending on the textbook and course plan),
students will usually encounter constrained-optimization problems. These resemble
related-rates problems, not only in being presented as “word problems”, but also in in-
volving two variables on an equal footing. The usual approach in most textbooks (see,
for instance, [1, p. 264], [4, p. 292], [5, p. 288], [8, pp. 331–2], and [9, p. 238])—and
that favored by many instructors—is to use the constraint equation to eliminate one
variable from the objective function, differentiate the resulting one-variable function,
and find the extremum.

Problem 2. Find the dimensions of the largest rectangle that can be inscribed in a
semicircle of radius R.

Solution A (traditional). From the constraint x2 + y2 = R2 we get

y =
√

R2 − x2.

Substituting this into the area A = 2xy of the rectangle, we obtain

A = 2x
√

R2 − x2,

and differentiating this yields

d A

dx
= 2

√
R2 − x2 − 2x2

√
R2 − x2

,

which simplifies to

d A

dx
= 2(R2 − x2) − 2x2

√
R2 − x2

.
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Figure 1. Maximize the area of the rectangle

Setting the numerator equal to 0 and solving, we get 2x2 = R2 or x = R/
√

2; the
edges of the rectangle are thus R/

√
2 and

√
2R.

This problem, like some others, can be simplified somewhat by maximizing the
square of the area rather than the area itself. This trick, mentioned in some books,
has limited application, though it is certainly worth knowing. A much more generally
applicable technique is found in a few books. Implicit differentiation is used at the
outset, on both the constraint and objective functions; the derivative is then eliminated
to obtain the solution.

Solution B (early differentiation). Implicitly differentiating both the constraint
function

x2 + y2 = R2 (4)

and the objective function A = 2xy, and setting the latter equal to 0, we get:

2x + 2yy′ = 0

A′ = 2y + 2xy′ = 0.

Combining these, we get 2(x2 − y2) = 0, whence the solution

x = ±y (5)

readily follows. Substituting this into (4) gives us x = R/
√

2 as before.

This is faster for two reasons. It is usually easier to differentiate a relation than
to differentiate the function obtained by solving it for one variable; and the resulting
equation is always linear in the derivative, so the step of eliminating the derivative is
straightforward. Moreover, differentiation lowers the degree of a polynomial function,
often simplifying the algebra. It is still possible that the resulting system of equations
in x and y cannot be solved, but the odds are improved.

The functions in textbook constrained-optimization problems rarely go much be-
yond quadratics. As the complexity of the functions rises, so do the difficulties of
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eliminating a variable, or finding the zeros of the derivative finally obtained. Fortu-
nately, quadratic relations are common in real-world applications, so the techniques
learned do have some value.

With the early-differentiation method, it is possible to go somewhat further. The
reader may like to try and compare the two methods on the problem of determining
the point at which the curve 2x3 + 3xy2 + y3 = 6 comes closest to the origin. The
above-mentioned trick of minimizing x2 + y2 rather than the distance itself will help
here.

Early differentiation is given as an alternative method for one problem in Adams [1,
pp. 266–7], and one in Stewart [8, p. 334]; but neither author suggests it as a method of
first choice. Most textbooks examined do not mention it at all. Interestingly, Schaum’s
Outline of Calculus, while characteristically sparing of explanation, gives three ex-
amples of this technique [2, pp. 50–53] among ten worked constrained optimization
problems (cf. [7, pp. 237–242].)

It is also worth noting that (5) gives not only a solution to the entire family of
equations with different values of R, but also the general solution to the dual family
of problems in which a rectangle of specified area must be inscribed in a semicircle
with the smallest possible radius (this is mentioned in Adams, [1]). These are general
features of this approach whenever the objective and constraint are both specified as
values of functions; this duality will be familiar to the student who has studied lin-
ear programming, but is not commonly mentioned in first-year calculus. With early
differentiation, little extra effort is needed to do so.

Implicit differentiation is, of course, an important technique in its own right, and
is used heavily in subjects such as thermodynamics, mechanics, and economics. It is
usually only “in the spotlight” for a comparatively short period during the first year cal-
culus course, and students may consider it as an unimportant diversion from the main
thrust of the course. Stressing it as a technique for both related-rates and constrained-
optimization problems should emphasize its true importance.

Finally, the student who continues into multivariate calculus will learn to solve more
advanced optimization problems using the method of Lagrange multipliers. Here, too,
an important part of the technique is to do the differentiation first, rather than eliminat-
ing variables; the student who is already confident with operating in this order should
find Lagrange multipliers less intimidating.
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