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Have you ever reflected on the mystery of learning mathematics when you are strug-
gling with a new concept or theorem, and suddenly, it may show up from a new angle
and reveal something familiar that you can relate to? Thereafter, the pieces of an unfin-
ished puzzle usually fall nicely into place. This is a story of a couple of such moments
and of conquering an intriguing theorem on exponential functions.

The other day my elderly colleague asked me to check whether a lemma, which we
would need elsewhere, is true in certain cases. The lemma was the following one.

LEMMA. For n ≥ 2, let κ1 > · · · > κn > 0 and t1 > · · · > tn−1 ≥ 0 and suppose
that a1, . . . , an are real numbers with a1 > 0. If the function

f (t) =
n∑

j=1

a jκ
t
j

satisfies f (t1) = · · · = f (tn−1) = 0, then f (t) > 0 for all t > t1.

The lemma seemed to be just another technical proposition, one of many, belonging
to the folklore of real analysis. But since I have taken some courses in real analysis,
naturally I accepted the challenge.

Rather soon I was able to prove it for n = 2, 3, 4, the cases that were the most inter-
esting with respect to our linear algebraic research. And since it was only a technical
lemma, I am a little embarrassed to say it now, I just thought to leave it at that.

But the lemma did not leave me in peace. I had a constant feeling that I hadn’t
yet figured out the deepest essence of the lemma. So, I had to return to it and find
out what could have escaped my notice. Sooner or later, something made me think
of the fundamental theorem of algebra and its well-known consequence, namely, that
a polynomial of degree n has at most n roots. Then, almost immediately, the lemma
started to take another shape. And now, if you think carefully enough, you certainly
notice that it is very closely related to the following conjecture.

CONJECTURE. For n ∈ N and j = 0, . . . , n, let 0 < κ0 < · · · < κn and a j ∈ R so
that an 
= 0. Then the function f : R → R,

f (t) =
n∑

j=0

a jκ
t
j

has at most n zeros.

There it was! A statement that is very similar to the famous result on the number of
the roots of a polynomial. Recall that a polynomial of degree n is a sum of n power
functions and a constant function, possibly with some coefficients equal to zero. In
other words, the similarity lies in the relation between the number of the terms in the
sum and the upper bound for the number of the zeros.
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At this point, I remembered that I had proved the lemma only for n = 2, 3, 4, not for
all n ≥ 2. The conjecture would not be of any interest if it held only for a few values
of n. How should I proceed now?

The first thing that came to my mind was to ask whether a sum of n + 1 exponential
functions could be presented, similarly as a polynomial of degree n, as a product of
at most n simple terms whose zeros are easily detected. To my disappointment, I was
not able to find such a presentation. My second thought then was to try to construct
an example of a sum of n + 1 exponential functions that has exactly n zeros; or even
more which would mean the failure of the conjecture.

A method for constructing examples. Now, clearly, an example to be constructed
would be most useful if it applied for all n ≥ 1. Hence I decided to try a recursive
method.

Soon I noticed that I have to overcome at least two problems. First, suppose that

fk(t) = a0κ
t
0 + · · · + akκ

t
k

has exactly l zeros t1 < · · · < tl which we may know or not. Now, adding ak+1κ
t
k+1

to fk implies that fk+1(t j ) = 0 does not hold anymore for j = 1, . . . , l. But on the
other hand, if |ak+1κ

t
k+1| were small enough on the interval [t1, tl], then the number of

the zeros might be controlled somehow when shifting from fk to fk+1. However, this
approach requires that we know the interval where the zeros of fk lie.

The second problem is that usually we do not know the zeros of fk and thus the
interval [t1, tl]. This is simply due to the fact that, in most cases, we are not able to find
a complete solution to the equation fk(t) = 0. Fortunately, it is possible to gain some
information on the zeros of fk simply by exploring how fk changes sign. Recall that
fk is continuous for every k ≥ 0.

For the sake of simplicity, I also decided to use only exponential functions whose
bases are at least one. Here is what I did.

For 1 ≤ κ0 < κ1, it is easy to find constants a0, a1 ∈ R so that

f1(t) = a0κ
t
0 + a1κ

t
1

has exactly one zero. Suppose then that

fk(t) = a0κ
t
0 + · · · + akκ

t
k,

where 1 ≤ κ0 < · · · < κk , has at least k zeros t1 < · · · < tk whose existence has been
verified by observing that, for some 0 ≤ δ0 < · · · < δk ,

fk(δ j ) = (−1) j y j , (1)

in which all y j ’s have the same sign and

bk = min{|y j | : j = 0, 1, . . . , k} > 0.

If we now fix κk+1 > κk and choose ak+1 so that ak and ak+1 have different signs
and

|ak+1| ≤ bk

2κ
δk
k+1

,

then, by the triangle inequality and the fact that κ t
k+1 is increasing, fk+1(δ j ) and fk(δ j )

have the same sign and

| fk+1(δ j )| ≥ bk

2
(2)
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for every j = 1, . . . , k. This means that, similar to (1), also fk+1(δ j )’s oscillate about
the t-axis but never equal zero. Hence fk+1 has at least k zeros in [δ0, δk]. Moreover,
since κ t

k+1 is not bounded, there exists δk+1 > δk so that

fk+1(δk+1)

fk+1(δk)
≤ −1. (3)

This implies that fk+1 has another zero in [δk, δk+1]. So we conclude that fk+1 must
have at least k + 1 zeros in [δ0, δk+1] altogether. Further, (2) and (3) guarantee that we
can proceed with adding new exponential functions as many times as we want to. Here
is an explicit example.

EXAMPLE. For any natural number n and t ∈ R, let

fn(t) = 1t − 2t

2
+ 4t

42
− 8t

83
+ · · · + (−1)n2n(t−n) =

n∑
j=0

(−1) j 2 j (t− j ).

I claim that fn alternates sign at the sequence t = 0, 2, 4, . . . , 2n. Let us verify this
for all natural numbers n. For t = 0, the leading term is 1t and it dominates the sum of
the absolute values of the other terms. Similarly, for t = 2n the last term dominates.
For any even integer t = 2k with 1 ≤ k ≤ n − 1, the three terms j = k − 1, k, k + 1
sum to zero. The terms for the leading tail, that is the terms j = 0, . . . , k − 2 (if
any exist), have the sum of their absolute values dominated by the term j = k − 2.
Likewise the terms for the trailing tail, the terms j = k + 2, . . . , n (if any exist), have
the sum of their absolute values dominated by the term j = k + 2. Thus the sum of the
two tails has the same sign as the term j = k, specifically (−1)k , because the terms
j = k − 2, k, k + 2 all have the same sign.

For instance, for n = 5, we have

f5(t) = 1t − 2t

2
+ 4t

42
− 8t

83
+ 16t

164
− 32t

325

and

f5(0) = 1 − 2−1 + 2−4 − 2−9 + 2−16 − 2−25 > 0,

f5(2) = 1 − 21 + 20 − 2−3 + 2−8 − 2−15 < 0,

f5(4) = 1 − 23 + 24 − 23 + 20 − 2−5 > 0,

f5(6) = 1 − 25 + 28 − 29 + 28 − 25 < 0,

f5(8) = 1 − 27 + 212 − 215 + 216 − 215 > 0

f5(10) = 1 − 29 + 216 − 221 + 2−24 − 225 < 0.

Clearly, f5 has at least 5 zeros.
All in all, I was able to construct a sum of n + 1 exponential functions that has at

least n zeros but not able to confirm that it had no more than n zeros. An important
conclusion follows: if the conjecture is true, it is sharp in the sense that the upper bound
for the number of zeros is the best possible.

A well-established example often leads the way to the proof. It is nearly a law
of nature in mathematics that a well-motivated example fitting a theorem is half the
battle of proving the theorem. Therefore, I decided to revise the above construction
once again.
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First I noticed that the recursive method I had chosen is based on the idea of math-
ematical induction. Hence, if I could verify the statement of the conjecture in the case
n = k + 1 using the same statement for n = k, the proof would be essentially done.
Moreover, whenever I had not been able to count the number of the zeros directly,
I had managed by counting something else that is connected to the zeros. And now
remember what Rolle’s theorem implies. If you know the number of the zeros of the
derivative of a differentiable function, then you can bound the number of the zeros of
the original function. And again, almost miraculously, the above construction began to
change into the argument that converts our conjecture into a theorem!

And now afterward, when I reflect on the proof, I still find it very elegant. The
elegance, in my opinion, comes from the fact that it relies only on a few very basic
results of classical real analysis and still it reveals quite an interesting property of
exponential functions.

To my surprise, I have not been able to find this result in the literature. However, I
imagine that several mathematicians may have noticed it in the course of history, and
yet we do not know if any actually did. Anyway, I take the liberty to name this theorem
and call it the lost cousin of the fundamental theorem of algebra due to an apparent
resemblance between that famous result and our theorem.

The proof. Let us consider first the case n = 1. By writing λ1 = κ1/κ0, we have

f (t) = κ t
0

(
a1λ

t
1 + a0

) = κ t
0g(t),

where f (t) = 0 if and only if g(t) = 0. Since λ1 > 1 and a1 
= 0, there is at most one
value t = t1 such that g(t1) = 0.

Assume then that the claim holds for some n = k ≥ 1. Similar to the above, we
denote λ j = κ j/κ0 in order to have f (t) = κ t

k+1g(t), where

g(t) =
k+1∑
j=1

a jλ
t
j + a0,

and λk+1 > · · · > λ1 > 1. Again, f (t) = 0 if and only if g(t) = 0.
Now, for all t ∈ R, the derivative of g is

g′(t) =
k+1∑
j=1

a j (ln λ j )λ
t
j =

k∑
j=0

β jμ
t
j ,

where μ j = λ j+1, β j = a j+1 ln λ j+1 and βk 
= 0. By the assumption, there exist at
most k distinct numbers δ1 < · · · < δk such that g′(δ1) = · · · = g′(δk) = 0. Thus, by
Rolle’s theorem, there are at most k + 1 distinct numbers t1 < · · · < tk+1 such that
g(t1) = · · · = g(tk+1) = 0. The theorem follows.

There is still one thing to tell. My elderly colleague, who seems to know me quite
well, reminds me every now and then that after having proved a theorem I should
always check whether there is another one around the corner. So, let us consider the
following question. Since exponential and logarithm functions share many important
analytical properties (all of them are continuous, differentiable, integrable and, except
for the constant function, strictly monotone etc.), do we find another lost cousin by
replacing the exponential functions with logarithm functions (to different bases) in our
theorem?

Well, the logarithm functions have certain arithmetical properties that eventually
forces us to answer the question with “No”. Let us consider the sum
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gn(t) =
n∑

j=0

a j logκ j
t,

where 1 < κ0 < κ1 < · · · < κn and a j ’s are real numbers so that an 
= 0. Changing
logarithms to the same base e gives us

gn(t) =
n∑

j=0

a j
ln t

ln κ j
= ln tα,

where

α =
n∑

j=0

a j

ln κ j
.

Now, depending on whether α is greater than, less than, or equal to zero, gn is, re-
spectively, strictly increasing with gn(1) = 0, strictly decreasing with gn(1) = 0, or
gn(t) = 0 for every t > 0.
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Not Mixing Is Just as Cool
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Newton’s law of cooling is a staple of the Calculus curriculum; it is usually presented
as a first or second example of a separable differential equation. In that context, the law
states that the rate of change of the temperature T of, say, a quantity of fluid is propor-
tional to the difference between the fluid’s temperature and the ambient temperature
T∞:

dT

dt
= −k(T − T∞). (1)

This is easily solved (part of the difficulty in solving it is dealing with initial condi-
tions):

T (t) = T∞ + (T0 − T∞)e−kt (2)

where T0 := T (0) is the temperature at time t = 0.
The following problem is, for many students, a challenging application of Newton’s

law even given the formula (2).


