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The parameter » in the binomial distribution is a positive integer. What happens if
we allow it to be any positive number? The new distribution we get is not only easy to
work with but is useful in approximation situations that beginning statistics students
could encounter. In addition, applications involving the distribution provide a good
source for undergraduate research problems.

We begin by setting g(x) = (%) p*(1 — p)"~*, where () = 2=D=(=xtl) When
p < 0.5, we observe that many of the features of the binomial distribution still hold.
In particular, Y 2 ) g(x) = 1, which follows from the binomial series,

(+755) =20 G5)
2"8()‘) =np, 2()6 —np)’g(x) =np(1 - p),
and
n@) = 2t”g(x) =(1—-p+pt)", forl|t| <0.5/p.

The function g(x) is not a probability density function (pdf) because (") alternates
between negative and positive values for x > [n] + 1. With this in mind, we define the
pdf of the almost-binomial(n, p) distribution to be

(::)px(l—p)""x, x=012 .. ..[n
f&x) = ./
1 - ; (x)px(l -p)", x=[nl+1,

where [n] denotes the greatest integer less than or equal to 7.

We observe that when p < 0.5, the sum of the terms beyond x = [r] in each series
above tends to be extremely small. In fact, |} 72 ., g(x)| < [g([n] + 1)| < pi"l.
Consequently, if p < 0.5 and X has an almost-binomial(n, p) distribution, E(X) ~
np and Var(X) ~ np(1 — p), and the probability generating function (pgf) for X, n(¢),
satisfies n(t) ~ (1 — p + pt)", |t| < 0.5/p.

Example 1. For n = 5.5 and p = 0.4, we get the following pdf of the almost-
binomial(5.5, 0.4) distribution.

X 0 1 2 3 4 5 6
f(x) 0.06023 022085 0.33128 0.25766 0.10736 0.02147 0.00115

Note that np = 2.2 and E(X) = 2.2008, and np(1 — p) = 1.32 and Var(X) = 1.3205.
Almost-binomial(n, p) distributions form a rich two-parameter family of discrete
distributions where the mean exceeds the variance, and they are useful in a variety of
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modeling situations. Next, we show how they can be used to model sums of indepen-
dent random variables.

Suppose that X, X, ..., X;, are independent Bernoulli(p;) random variables (re-
ferred to as Poisson trials). Let X = ZLI X; (the distribution of X is called the
Poisson-binomial distribution). We can approximate probabilities concerning X as fol-
lows. We set

k k
np=p=7) pi, and np(l—p)=0c>=Y pi(l—p),

i=l i=1

and get

2
k
(Zi:l pl) Zf:l p12
T~k 2 and p= —r
> izi Pi D ici Pi
Then we use the almost-binomial(n, p) distribution to approximate probabilities in-
volving X.

n =

Example 2. A machine has 20 components that operate independently. Suppose the
probability that the ith component fails is p; = ﬁ. Let X be the total number of com-
ponents that fail. For beginning students, the exact distribution of X is difficult to deal
with, especially if they only have a hand calculator. However, almost-binomial approx-
imations are straightforward. Calculating n and p as above, we get p = 0.13667 and
n = 15.366. The next table gives the almost-binomial approximations to P(X = x),
denoted AlBin(x), and (for comparison purposes) the true values for P(X = x).

x 0 1 2 3 4 5 6 7 8
AlBin(x)  0.10455 025431 028917 020395 0.09981 0.03592 0.00982 0.00208 0.00034
P(X =x) 0.10432 025452 0.28046 0.20385 0.09961 0.03585 0.00985 0.00211 0.00036

A theoretical justification for almost-binomial approximations is given in [4]. (See
also [1, pp. 188-191], for a similar theoretical discussion of binomial approximations.)
There we can find the following result as well as a comparison of almost-binomial,
binomial, and Poisson approximations.

Theorem. Suppose X = Zle X;, where X, X», ..., X;, are independent Bernoulli

. . vk P2 ok p)? -
random variables with parameters p;. Let p = >:’k:—1{, and n = -ZF—-, and let P be
i=1 i i=1Fj
arandom variable for which P(P = p;) = Z"i - Then for A C {0, 1, ..., [n]},

|P(X € A) — P(AIBin(n, p) € A)| < Té? Var(P)

k—[n]—1
([n]1+ DI = p)

I have directed two undergraduate research projects related to the almost-binomial
distribution. The first intern (320 hours), Abu Jalal, developed error bounds for almost-
binomial approximations to probabilities involving sums of independent hypergeomet-
ric random variables [3]. The second intern (160 hours), Don Claycomb, is currently
finishing work on practical (non-theoretical) improvements to the error bound given

P(X = [n]+2).
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in the theorem. This theorem is rather conservative and one can generally get much
smaller bounds on the errors in approximation that hold for intuitively worst-case
situations—thus, arguably everywhere.

There are other opportunities for undergraduate research that faculty members could
craft. One interesting problem would be to work out the details of testing a null hy-
pothesis that data is from a Poisson distribution by comparing the Poisson fit to the
data with that of the best fitting almost-binomial distribution. If one suspected the data
would be under-dispersed relative to the Poisson distribution (before collecting data),
a one-sided test of this sort may be an interesting competitor to the Poisson dispersion
test.

Other possible problems would include looking at some of the material in [2] that
used the Poisson-binomial distribution, namely logistic regression and conditional
Bernoulli models. The almost-binomial approximation to the Poisson-binomial may
be of interest here.
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The Roots of a Quadratic
Leonard Gillman (len@math.utexas.edu), The University of Texas, Austin, TX 78712

In a recent discussion among several math teachers, both college and precollege,
someone remarked that we do students a disservice when we let them “solve” a
quadratic equation by means of the formula without having them check their answers.
The obvious question at this point is just how the students are expected to do the
checking. Most of the group agreed that substituting into the quadratic is too hard, at
least for beginning students, especially when complex numbers are involved.

Regarding this last assertion, observe that there is no need to use the i-notation in
order to do the checking. Consider the equation f(x) = 0, where

fx)=ax*+bx+c (1)
=2x2—5x+7.

I include enough detail to illustrate the mechanism. Introduce the symbol

u = /b2 — dac = ~/=31, and note that > = —31.

The solutions given by the quadratic formula are 3. For the solution s = | say,

we get
(54w 5+4u
f(S)—2< : )—5( : )+7
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