Guess a Number—with Lying

JOEL SPENCER
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What’s green, hangs on a wall, and whistles?
I don’t know.

A red herring.

But it’s not green.

You can paint it green.

But it doesn’t hang on the wall.

You can hang it on the wall.

But it doesn’t whistle.

So, it doesn’t whistle.

Stainislas Ulam, in his autobiography Adventures of a Mathematician, raises an interesting
question (italics ours):

Someone thinks of a number between one and one million (which is just less than 22°). Another
person is allowed to ask up to twenty questions, to each of which the first person is supposed to
answer only yes or no. Obviously the number can be guessed by asking first: Is the number in
the first half-million? and then again reduce the reservoir of numbers in the next question by
one-half, and so on. Finally the number is obtained in less than log,(1000000). Now suppose
one were allowed to lie once or twice, then how many questions would one need to get the right
answer?

A number of technical papers [1], [2] have explored aspects of this problem. Although we
discuss some possible answers to Ulam’s question, our main emphasis will be on the actual play of
the game. We shall assume the first player (called the Responder) is allowed to lie at most once.
The Responder selects a number x between 1 and » and the second player (the Questioner) is
allowed k questions. All questions must be of the form: Is x > a? After k rounds the Questioner
wins if he knows, with proof, the number x. We further allow the Responder to play a “Devil’s
stategy.” By this we mean that the Responder does not actually think of a number x before the
game begins but only responds in a consistent manner, that is, at all times there is some x for
which he has lied at most once. The reader is urged to try a few games before proceeding. (The
values n = 100, k = 11 make for interesting play.)

We observe that when no lies are permitted the game has an exact solution. If # < 2¢ then the
Questioner has a win by the standard halving strategy. If n > 2* then the Responder has the
Devil’s strategy (that clever ninth graders occasionally discover) of answering each question so
that the reservoir of numbers is at least half of what it was. After k questions there will be more
than n2 ™, hence at least two, numbers remaining.

Let us discuss some possible strategies for the Questioner when one lie is allowed. Suppose that
with no lies permitted, u questions suffice to determine the answer. With one lie allowed, we may
wish to ask each question twice. If two consistent answers to the same question are not given (this
occurs at most once) repeating the same question a third time will reveal the truth. With this
strategy, 2u + 1 questions are sufficient to determine the answer. A modification of the strategy,
discovered by M. A. Spencer, does substantially better when u is large. Questions are asked as if
there were no lies in u/a groups of a questions. After each group of questions, two further
questions are asked to confirm the previous answers. If confirmation of previous answers is not
received, which occurs at most once, all (a + 2) answers are thrown out. The lie has been exposed
and the Questioner continues with the standard halving strategy.
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To illustrate this strategy, suppose n = 1,000,000 and a = 6. First six rounds: Is x > 500,000?
No. Is x>250,000? Yes. Is x> 375,000? Yes. Is x> 437,500? No. Is x> 406,250? Yes. Is
x > 421,875? Yes. These would be followed by: Is x > 421,875? Is x > 437,500? If the answers are
Yes followed by No then the Questioner knows that 421,875 < x < 437,500.

The total number of questions required to determine the number x using this strategy is at
most approximately (u/a)(a + 2) + (a+ 2). We set a~ y2u to minimize this expression so that
the Questioner requires at most approximately u + 2y2u + 2 rounds to determine the number.
This strategy, though suboptimal, is extremely simple to implement.

The sample game shown in FIGURE 1 with n =100 and k = 11 shall provide a basis for our
further discussion. The answer to the fifth question in that game exposes a lie, though at that point
we do not know whether the lie is in response to the first or the fifth question. The game is then
reduced to finding a number between 46 and 100 (inclusive) and the normal halving strategy
described by Ulam produces the number 65 after the final question and answer.

It is this author’s personal experience that the above example is typical of actual play. The
Responder makes his lie very early. The Questioner attempts to expose a lie by asking precisely
the same question more than once. These, however, are observations of psychology and are not
reflected in the mathematical analysis of the game.

In order to mathematically analyze the game, and attempt to answer Ulam’s query, we shall
imitate the analysis of the game with no lies permitted. The key difference is that we define a
possibility as an ordered pair (x, L) where x is the number chosen and L,0 < L < k, is the number
of the question to which the Respondent lies. (If L=0, the Responder does not lie.) For
2¥<n(k+1) (for example, n =100, k =10) there is a Devil’s strategy. To each question the
answers Yes and No split the possibilities into two disjoint classes. The Responder gives the
answer that leaves the larger class. After k rounds there will remain at least two possibilities. But
(and this is essential) these possibilities cannot have the same number x, for if the Questioner had
determined the number x he would know, by checking previous answers, to which question the
Responder had lied.

We illustrate the Devil’s strategy with the situation in our sample game for n =100, k=11
when question 3 is asked but not yet answered. The set of possibilities is:

(x,L) 0<x< 25,L=2 25 possibilities
25<x< 50,L#1,2 250 possibilities
50<x<100,L=1 50 possibilities
for the total of 325 possibilities. The third question: Is x > 387 splits the above set as follows:

NO CLASS YES CLASS
0<x<25L=2 25  25<x<38,L=3 13
25<x<38,L#1,23 13x9=117 38<x<50,L#1,2,3 12x9=108
38<x<50,L=3 12 50<x<100,L=1 50

154 171

and so the proper Devil’s strategy is to answer Yes.

The Questioner’s strategy is to select a question that will balance the Yes Class and the No
Class as evenly as possible. In the above situation if the question “Is x > 38?” is adjusted to “Is
x > 39?7, the No Class gains the possibilities (39, L), L # 1,2,3 and loses (39, 3) for a net gain of
eight, making the No Class/Yes Class split 162/163. Thus “Is x> 39?” is the proper third
question.

When it is the Questioner’s turn let us call the set of remaining possibilities the state and the
number of remaining possibilities the weight of the state. The typical state may be written in the
form S'M/S™ where S’ represents i consecutive numbers x which satisfy all answers but one and
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1. Is x> 50? No.
2. Is x > 257 Yes.
3. Is x > 38? Yes.
4. Is x > 457 Yes.
S. Is x > 50? Yes.
6. Is x> 727 No.
7. Is x> 59? Yes.
8. Is x > 66? No.
9. Is x> 63? Yes.
10. Is x > 65? No.
11. Is x > 64? Yes.

FIGURE 1. Sample game with n = 100, k = 11.

M/ represents j consecutive numbers x which satisfy all answers. We’ll call the numbers S’ a side
group and the numbers M/ the main group. In the sample game, the initial state M'® becomes
successively: M0, §25M25%0 SB3M12850 §7M3S* and, after the fifth response, $°S°°. (For
example, after the third response, {39,...,50} is the main group and {26,...,38}, {51,...,100} are
the side groups.) If there are ¢ questions remaining, the state S‘M’S™ has weight w=i+
+1Dj+m.

With a little practice, the Questioner can rapidly decide (at least within one number) the
appropriate question. Let the state be S'M’S™ with ¢ questions remaining. Let a, lie in the center
of the main group. (If lies were not allowed, then “Is x > a,?” would be the proper question.) The
side groups force an adjustment of (m —i)/(¢t — 1) and the Questioner should ask “Is x > a, +
(m—1i)/(t—1)?". (Note, roughly, that as ¢ decreases, i.c., as the game nears its conclusion, the
influence of the side groups becomes stronger.) If the number a, + (m —i)/(¢ — 1) is not in the
main group then this method does not apply. Let the state be S‘M’S™ with m > i (the other case
being symmetric) and let E be the largest number in the right side group. If w denotes the weight,
the Questioner then asks “Is x> a?” where a=E — (w/2) +j. For example, after the fourth
round in our sample game the state is S’M°S*° with seven questions remaining (¢ =7). Here
w =97, E =100 and the Questioner asks: “Is x > 57?”. If Yes is the response, then the new state
is §°5“, where the side groups are the integers from 46 to 50 and from 58 to 100. The Questioner
should then follow the normal halving strategy (bearing in mind that the median is no longer the
average of the extremes).

For which n, k does this “even splitting” strategy lead to a win for Questioner? A precise
answer to this question is difficult because it is not always possible to split the set of possibilities
evenly. For example, in our sample game, the state after the first question and answer is M>°§%°
and the weight is w = 50(11) + 50(1) = 600. The question “Is x > 28?” gives a No Class/Yes Class
split of 293 /307 and the question “Is x > 29?” gives a No Class/Yes Class split of 302 /298. This
leads us to an analysis of how closely the possibilities may be split.

Suppose that i — 1 questions have already been asked and answered and that the current state
has weight v;,_;. A question “Is x > a?” will split the v,_; possibilities into a No Class and a Yes
Class. Let f(a) be the size of the No Class. The Questioner seeks an a such that f(a) is as close as
possible to v;_,/2. (For example, in our sample game after two questions had been asked and
answered, the Question “Is x > 38?” would induce a No Class/Yes Class split of 154,/171. There
v, =325 and f(38) = 154.) If the question “Is x > @ — 1?” is changed to “Is x > a?” where a is in
the main group then the No Class gains the possibilities (a, L), L+ 1,...,i and loses (a, i) for a
net gain of k — i. In this case f(a) =f(a — 1) + (k — i). (In the sample game, f(39) = 162.) When a
is in a side group, f(a)=f(a — 1) +1 and, of course, when a is not in any group, f(a)=f(a —1).
Assume i < k — 1. The function f satisfies f(0) < v;,_,/2 and f(n) > v,_;/2 (why?) and has jumps
of at most k — i. Hence for some a, f(a) is within (k — i) /2 of v;_, /2. (This may be considered a
discrete version of the Mean Value Theorem. If, for example, a function goes from less than 162.5
to more than 162.5 with jumps of at most 8 then at some point its value is within 4 of 162.5.) The
Questioner asks “Is x > a?” for that a. Regardless of the answer, the new weight v; satisfies
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v;<U/2+(k—1i)/2. (1)
To analyze inequality (1), we set w, = v;2'~* so that

w;<w,_y +(k—i)2i k1 (2)
and hence
k—-1 '
Wi <Swot+ 2 (k—i)2' 7 (3)
i=0

The term (k — i)2' %! in (2) is essentially the effect of the unevenness of the splitting on the i th
question. The terms become significant only when k — i is small. Setting j = k — i, we obtain

k-1 k
Y (k-i2 1= ¥ 27 (4)
i=0 j=1

The right hand side of (4) is bounded by the infinite sum ¥ j2 /! which converges to 1 (a nice
exercise!). Let vy = n(k + 1), the initial number of possibilities. Then w, = n(k + 1)2~* and from
(3) and (4) it follows that

w1 <n(k+1)27F+1
and thus
Vg1 =2w,_1<2n(k+1)27%+2,

Assume that n<2%"!/(k+1). The Questioner, applying the halving strategy, can assure
v,—1 < 3. With one question remaining, the state is either M, S, or SS. In the first two cases, the
number x has already been determined. In the third case, the lie has already been exposed and the
number x may be determined with the last question.

Combining these observations, we obtain the following results for this strategy.

(i) If n < 2% /(k + 1), the Questioner wins,
(ii) If n>2*/(k + 1), the Responder wins.

For example, if n =100, the Responder wins with 10 questions and the Questioner wins with 12
questions. What happens if there are 11 questions? A detailed study (using a small computer) of
endgames provided an answer. Checking all states with five questions remaining, it was found that
if v,_5<26 then the Questioner has a winning strategy. (S*M3S* is the minimal weight state
from which the Responder wins.) A modification of our analysis of inequality (1) can be used to
show

Vp_s<0p2 K3 +6.
Thus for this case we can improve (i) to
(iii) If n < 32%/(k + 1), the Questioner wins (k > 5).

For any value of n, the formulae (ii), (iii) determine the required number of questions within
one. A more detailed endgame study would certainly increase the constant 5/8 in (iii). But it
seems very difficult to determine whether the answer to Ulam’s original problem is twenty-five or
twenty-six.
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