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Introduction Almost every textbook on complex analysis or on Fourier series
contains a proof of Euler’s identity

Furthermore, there are countlessly many proofs of this result that do not rely explicitly
upon complex function theory or Fourier analysis. In the references, we have listed
some elementary proofs. Here we shall present a short and simple proof that uses only
the definitions of r, sin, cos, and exp, and of course the notion of convergence.
Moreover, our proof also gives Euler’s identity

sinx=x[](1- 2=
in x xkl:[l( k%z)

A trigonometric identity Let m and n be positive integers. It follows from the
relation

cos(k + 1)x +cos(k — 1) x = 2cos x - cos kx

that there exists a polynomial T, of degree n such that for all x €R

cos nx = T,(cos x).
In particular we have for positive integers k
cos2kx = Ty (cos2x) = T, (1 — 2sin® x).
This, together with the relation
sin(2k + 1) x — sin(2k — 1) x = 2sin x - cos(2kx),
shows that there is a polynomial F, of degree m such that for all x € R
sin(2m + 1) x = sin x - F, (sin® x).

Since sin(@m +1)-kw/@m+1)=0 for k=1,2,...,m we conclude that F, has
zeros at sin® kw/(2m +1), k=1,2,..., m. These zeros are distinct, so F, has no

other zeros; thus
Fm( '/) = Fm(o) IE (1 - _2_-%?) ,

S oM+ 1
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and
F,(0) = lim M’Ll.)_x =9m+1.
x>0 sin x
Therefore we have
ﬁ sin® x
sin(2m + 1)x = (2m + 1)sin x 1- ;
@+ x=(am o D [T |1- —2p—
2m +1
thus
sin? —
. . X n 2m+1
51nxf=(21n+1)s1nml<=l_[1 1- — k7 | (1)
sin® 9o T

Comparison of sums and products For all real ¢ we know that e' > 1 +1¢. So if
1 +¢> 0 we see that
11

<.
o S I1H¢

e =

Let u < 1. The choice t =u /(1 — u) leads to
e /U <] —y.

For every collection of numbers u; € [0, 1) we have

Uk _ _ -
1- %‘, T=a, <¢ By /(=) < l;[(l —u) <e B <1, (2)

If we have in addition X, u; <1, then we even know that

—E‘ll;\ <

1+ Zuk

and consequently

Z“k
1+ZUL<1—1_[(1 uk)<zl_uk (3)

Proof that £ _ 7= Let m and N be positive integers, let m > N, and let

. x
sin 35—
U= %— k=1,...,m.
S5 1 2m+1
Choose x so small that 0 < X, u, <1. It follows from (1) that

m .
l_[(l—ttk)= s X ’
k=1

. X
(2m + l)sm SmIl
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and (3) implies that

2wy ,
sin x
<) 1
k

k Uk
1+ Y u <1- i .
— !k (2m + 1)sin STl

—u’

Divide by x* and let x go to zero. After a short computation we obtain:

2
1{ 1 n 1
6 (2m+1) k=1 ( (2m + 1)sin 2—73:—75_—1— )

and after a rearrangement

2 2
1 N 1 1 m 1
6 3 (2m+ 1)si1172‘—15—7:_T 6(2m+1)"  k=n+1 (2m+ 1)sin-2—nl—;7TTl-
For 0 <t < Z we have sint > 2¢, hence the right-hand side is less than
U U S
6(2m+1)"  k-y+1 (2k) 6(2m +1)

Let m — %, we arrive at

1

N 1
R R

4N~

<

o) =

and this shows that 7 _, 2 = -’;—2

Proof that sin x =xI15_,(1 —x®/k*m?). We choose m, N and u, as in the
previous section, but now we take x such that |x| < $Nr, and such that £ & Z. Again
(1) implies that
sin x =
= II (1-w),

. N !
(2m+ 1)sinﬁ%Tklj[1(l—uk) k=N

thus we obtain from (2)

- uy, sin x

1-—

<1l (4)

k=N+1 Y ; x r
(2m + l)sm Smil k=l_£ (1 - uk)

Using again that sin ¢t > 2¢ for 0 <t < Zwe see that

. x 2
(2m+1)smml— X \2
e = ok 5(%) ;
thus
w o x (k>N)
1—u, = (2k)2—x2 )
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Hence
m ltk xz
L 1o SeN-hT
k=N+1 k x
Thus it follows from (4) that
x2 sin x

<l

1- 5% <
2N — |2\| - . x N
(21n+1)smmk=l_[1(l—uk)

Let m — %, Then

x2 sin x

— - <
2N_|x| - N x2 -
*ﬂ(l‘m)

1

Now let N — o and we obtain for -+ & Z

; =|| 1— ——|.
sSin X 1k=1( kzﬂ-z)

For £ € Z this is of course also true.

REFERENCES

1.

o UL W o

Tom M. Apostol, A proof that Euler missed: evaluating {(2) the easy way, The Mathematical
Intelligencer 5:3 (1983), 59-60.

. Boo Rim Choe, An elementary proof of £°_, 5 = "—z, Amer. Math. Monthly 94 (1987), 662-663.
'y P n=1n 6 Y

D. P. Giesy, Still another elementary proof that &= "72, this MAGAZINE 45 (1972), 148-149.

. F. Holme, Ein enkel beregning av £5_, 7z, Nordisk Mat. Tidskr. 18 (1970), 91-92, 120.
. G. Kimble, Euler’s other proof, this MAGAZINE 60 (1987), 282. \
. K. Knopp, L Schur, Uber die Herleitung der Gleichung X5_, 7 =%, Archiv der Mathematik and

Physik (3), 27 (1918), 174-176. See also 1. Schur, Gesammelte Abhandelungen 11, Springer-Verlag,
New York, 1973, pp. 246-248.

. Y. Matsuoka, An elementary proof of the formula Tf_, 5= "—2, Amer. Math. Monthly 68 (1961),
Iy p k=1F 6 Y

486-487.

. L Papadimitriou, A simple proof of the formula £3_, 75 =2, Amer. Math. Monthly 80 (1973),

424-425.

. E. L. Stark, Another proof of the formula Zf_, &= "?2, Amer. Math. Monthly 76 (1969), 552-553.

10.
11.

E. L. Stark, 1 -+ + 4 — L + -~ =2 Praxis Math. 12 (1970), 1-3.
A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions II
problem 145, San Francisco, CA, 1967.




	Article Contents
	p.122
	p.123
	p.124
	p.125

	Issue Table of Contents
	Mathematics Magazine, Vol. 69, No. 2, Apr., 1996
	Front Matter [pp.i-ii]
	Inverse Problems for Central Forces [pp.83-93]
	The Mystery of the Linked Triangles [pp.94-102]
	Groups, Factoring, and Cryptography [pp.103-109]
	Notes
	Using Quadratic Forms to Correct Orientation Errors in Tracking [pp.110-114]
	The Birth of Period 3, Revisited [pp.115-118]
	Period Three Trajectories of the Logistic Map [pp.118-120]
	A Polynomial Taking Integer Values [p.121]
	Simple Proofs for  and sin [pp.122-125]
	Proof without Words: Jordan's Inequality 2x/π ≤ sin x ≤ x, 0 ≤ x ≤π/2 [p.126]
	Proof without Words: Decomposition the Combination [p.127]
	Counting Arrangements of 1's and -1's [pp.128-131]
	The Fermat Point of a Triangle [pp.131-133]
	Determinants of the Tournaments [pp.133-135]
	Goldbach's Problem in Matrix Rings [pp.136-137]
	A Characterization of Polynomials [pp.137-142]
	Professor Fogelfroe [p.142]

	Problems [pp.143-151]
	Reviews [pp.152-154]
	News and Letters [pp.155-160]
	Back Matter





