Bounds on the Perimeter of an Ellipse via Minkowski Sums
Richard E. Pfiefer, San Jose State University, San Jose, CA

Since the perimeter L(E) of the ellipse E={(x,y): (x*/a®)+ (y*/b*) <1}
(a, b>0) is not an elementary function of a and b, it seems natural to estimate
L(E) in terms of averages (or means) of a, b, and the perimeter of the unit disk
D={(x,y): x>+y2<1}. One of the earliest such approximations, L(E)= 2%
(a+b)/2, can be found in Kepler’s notes [see D. H. Lehmer, “Approximations to
the Area of an n-dimensional Ellipsoid,” Canadian Journal of Mathematics 2 (1950)
267-282]. This estimate is plausible since (Figure 1) it averages the circumradius
and the inradius of the ellipse.

Figure 1.

We will show that 27(a+ b)/2 is a lower bound for L(E). We will also show
that the root mean square M, =[(a*+ b*)/2]"? of a and b provides an upper
bound, 27M,, for L(E). These bounds are well known. [In addition to the above
reference, also see M. S. Klamkin’s “Elementary Approximations to the Area of
n-dimensional Ellipsoids,” American Mathematical Monthly 78 (1971) 280-283.]
However, the geometric proof using the Minkowski sum of two ellipses appears to
be new. Our proof that
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can also serve as an opportunity for students to learn about convex sets.

Given two plane convex sets P and (, their Minkowski (or vector) sum is
P+Q={p+q pe€P and g€ Q}. This is illustrated in Figure 2 for convex
polygons P and Q.
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For a bounded convex set K, the area A(K') and perimeter L(K) = sup{ L(P):
P is a polygon contained in K } are well defined, non-negative real numbers. [See,
for example, I. M. Yaglom and V. G. Boltyanskii’s Convex Figures, (translated by
P. J. Kelly and F. W. Walton) Holt, Rinehart & Winston, New York, 1961.]

It is an interesting property of the Minkowski sum that in general the area of
P + Q is not equal to the sum of the areas of P and Q. However, the perimeter L is
additive: L(P+ Q)= L(P)+ L(Q). For bounded convex sets, it can also be
proved that L(P)< L(Q) when P C Q. Figure 2 illustrates these properties for
convex polygons having side lengths s; and ¢,. The reader should verify the above
mentioned properties for the Minkowski sums illustrated in Figures 3a and 3b. Note
that the perimeter of a line segment is (by convention) twice its length.
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Figure 3a. P is adisk and Q is a rectangle. Figure 3b. P and Q are line segments.

For an introduction to convex sets, Minkowski sums, the proofs of the properties
above, and applications, see the above referenced (very readable) book by Yaglom
and Boltyanskii. '

It will be convenient to let 7D denote the closed disk {(x, y): (x*+y*<r?} of

radius r > 0. Our proof that
a+b a’+ b?
27r( )sL(E)s2vr 3

will follow by establishing that the Minkowski sum of E= {(x, y): (x*/a?)+
(»%/b*)<1) and E’'={(x, y): (x*/b?)+(y?/a®) <1} has inradius a+b and

circumradius |2( a2+ b?), as illustrated in Figure 4 (the dashed lines indicate the
boundary of E + E’).

Figure 4.
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Theorem. (a+b)DCE+E’'C{2(a*+b*)D.
Proof. Let (x,y)€D. Then (a+ b)(x,y)= (ax,by)+ (bx,ay) € E+ E’. This
proves the first containment.

Now, let (x, y) € E and (x/, y’) € E’. Then

I, )+ () P =l(x +x, y+3) |
=(x+x)+(y+y)’
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(Cauchy-Schwarz Inequality)
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<2(a’+b?).

Hence, ||(x, y) + (x’, y)|| < y2(a*+ b*) establishes our second containment. This
completes the proof.
It is easy to see that (a+ b)D is the largest disk inside E + E’. To see that

y2(a?+ b*) D is the smallest disk containing E + E’, observe that
2 b2 b2 a2

a
Va*+ b2 Va*+b? Val+b*  Va?+ b?

(\/a2+b2,\/a2+b2)=

+

eE+E’

and

(Va2 + b%,Va?+ b?) has length 2(a>+ b?) .

Taking the perimeters of the three sets in our theorem, using the additivity of L
and the fact that L(E) = L(E’), we obtain

27(a+b)<2L(E) <2wm,
or,
a*+b?
2

a+b
277( > )SL(E)S27T

Equivalent Inequalities
Jim Howard, Sul Ross State University, Alpine, TX and
Joe Howard, New Mexico Highlands University, Las Vegas, NM

In this capsule, we show that the following results, usually proved independently,
are equivalent: ‘
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