
Do Dogs Know Related Rates Rather than 
Optimization? 
Pierre Perruchet and Jorge Gallego 

Pierre Perruchet (Pierre.Perruchet@u-bourgogne.fr) is 

working at the Centre National de la Recherche 

Scientifique and is affiliated with the University of 

Bourgogne (France). He received his PhD in psychology 
from the Ren? Descartes University in Paris. Since then, 
one of his main research objectives has been to account for 

apparently sophisticated human (and on occasion, animal) 
learning abilities while avoiding the postulate of complex 

unconscious mental computations. He is currently working 
on the concept of "self-organizing consciousness." 

Jorge Gallego (gallego@rdebre.inserm.fr) is working at 
the Institut National de la Sant? et de la Recherche 

M?dicale, at the Robert-Debre P?diatrie Hospital in Paris 

(France). He earned his PhDs in mathematics and in 

biology from the Pierre et Marie Curie University in Paris. 
He is currently working on early behavioral and 

physiological impairments in newborn mice resulting from 

neurodevelopmental disorders. 

Timothy J. Pennings (this Journal, [2]) describes the strategy followed by his dog, 
Elvis, to fetch a tennis ball thrown into the water from the shore of Lake Michigan. 

Let AC in Figure 1 be the water's edge. The ball is thrown from A, and falls into 
the water at B. Elvis, said Pennings, did not jump immediately in the water at A, a 

strategy that would have minimized the distance traveled (AB). Neither did he run 

along the beach to enter at C, which would have minimized the swimming distance 

(BC). Rather, he ran along the beach a part of the way, then jumped into the water at a 

point D, somewhere between A and C. Pennings speculated that the location of D was 
chosen to minimize the retrieval time. In order to test his hypothesis, he measured the 

running speed (r) and the swimming speed (s) of his dog (r being considerably larger 
than s) and computed the optimal path. 

The time to get the ball is given by 

T(y) = z-y 
+ 

VxYT: (l) 

The value of y providing the optimal path is the value for which T'(y) = 0. Solving 
T"(y) = 0 for y, Pennings obtained: 

*/r/s + \Jr/s- 1 
(2) 

Surprisingly, it turned out that in most cases Elvis jumped into the water at a point 
that agreed remarkably well with the optimal value given by the mathematical model. 

Pennings did not conclude that his dog knows calculus, but instead noted that "Elvis's 
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Figure 1. The problem space (adapted from Pennings) 

behavior is an example of the uncanny way in which nature (or Nature) often finds 

optimal solutions" (p. 182). 
In an effort to double the sample size, we determined that Salsa, a female Labrador, 

also apparently chooses the optimal path when playing fetch along a lakeside beach 
near Nimes in France! But we want to suggest that the dog's behavior may not be as 

uncanny as it might at first seem. What makes the dog's performance seem surprising 
is that it agrees with the result of a mathematical model minimizing the total duration 

of the travel. That is, it suggests that dogs are supposedly able to calculate optimal 
strategies involving knowledge of the entire route before they ever begin running. But 
the question is; is this ability really required? 

Let us assume instead that the dogs are attempting to optimize their behavior on a 

moment-to-moment basis. For our specific concern, let us assume that a dog playing 

fetch chooses at each point in time the path that allows it to maximize its speed of 

approach to the ball. When running from A towards C at a constant speed, the ball at 
B appears closer and closer as the dog gets closer to C, but its speed of approach to 

B diminishes (reaching zero at C). At some moment of his run, his speed of approach 
while running on the beach becomes equal to his speed of approach when swimming 
directly to the ball; i.e., his swimming speed. It can be shown (a related rates problem) 
that if the dog jumps into the water at this moment, this strategy yields the same y 
value as that provided by the time of travel minimization model. 

For let W(t) be the distance from the dog to the ball (see Figure 1). Then 

W(t) = jx2(t) + z2(t), 

so 

Since x' ? 0 and zf 

When z = y, W'(t) 
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W'(t) 

r, we get 

xx' + zz! 

W'(t) 

s, so we solve 

rz 

Vx~2~T^ 

ry 

V*2 + z2 
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for y to get 

y/r/s + ljr/s-l' 

which is identical to (2). 

Although this solution is identical to that proposed by Pennings, it was gained with 
out assuming canine knowledge of the entire route, and hence can be construed as a 

more plausible model for dog's strategy. To perform in this way, dogs must first be 
able to estimate accurately their speed of approach at each moment. Second, they need 
to have a general awareness of their swimming speed before entering the water, since 

they have to jump into the water at the point when their speed of approach towards the 
ball while running on the beach becomes slower than their swimming speed. 

Is it reasonable to postulate that dogs have this ability? To answer, we ask in turn: 
Would this ability have been useful for dog's ancestors, who lived in a natural envi 

ronment? Obviously, the ability to detect transient changes in distance is crucial for 
animal species' survival, as when the ball is replaced by prey or predator. The gen 
eral awareness of swimming speed is certainly a more sophisticated ability, in so far 
as it requires memory of relative speeds. But again, it seems to be essential for the 
survival of any animal to know how rapidly it can move in the various media that it 

may encounter when pursuing prey or escaping a predator. For animal species, such as 

mammals, that are destined to move in a variety of different mediums, it is reasonable 
to assume that there is an innate ability to learn quickly from early experiences. 

In conclusion, both approaches require the use of calculus, either in solving an 

optimization problem or a related rates problem. However, as we showed, there is a 

major difference between our interpretation and the interpretation that results from 

taking Pennings' model as a realistic model of the dog's strategy. The ability that is 

required, in our view, forms part of general motion detection capabilities. As motion 
detection is common in most animals, it has been the focus of thorough investigations 
that have revealed some of its biological mechanisms (for a review, see [1]). Thus 
our solution provides a bridge between a specific behavioral strategy and ubiquitous 
biological mechanisms. Calculus then allows us to demonstrate that evolution has led 
to the development of biological mechanisms that are so powerful that they often lead 
to the optimal solution. 
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Since his appearance on the cover of this journal in 2003, Elvis has gone on to 

greater things, including being awarded an honorary degree "Litterarum Doctoris 
Caninarum" from Hope College in January, ?005 (see photograph). He was also 
the subject of a chapter in the book The Math Instinct by Keith Devlin (Thunder's 

Mouth Press, 2005). 
The author of the 2003 article "Do Dogs-Know Calculus?", Tim Pennings, 

(pennings @hope,edu), reports that hi^ rese^eti with Jglvis continues. One of his 
more recent findings is that, contrary to tteegi^ expressed in the article 
"Do Dogs Know Related Rates 

Ratf?-T^ 
Elvis appears to 

make global decisions rather than just inst?^ retrieving 
. the ball 

'].' 
'-' 

; % I 
-: ;. ;:: 

' ' 

Pennings writes, *? discovered this by accident Piaying fetch with Elvis, I 
decided to throw the stick while standing in the water, about 10-12 feet from 

shore, and with Elvis right beside me. When I threw the stick in a path parallel to 
the beach, Elvis swam in to shore, ran along the beach for a sizeable distance, and 
then dove back into the water to retrieve the stick. Thus, in swimming to shore 
he was not acting to minimize his distance to the stick as quickly as possible. 
Instead, he DID in fact apparently make a 

."jjjjoj^ the outset as to 

what path woujd get him to the stick t?jc -?^^^i^j^^ 
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