Theorem. Let b and m be integers greater than 1. If $\frac{1}{m}=\left(0 . a_{1} a_{2} \cdots a_{i} \cdots\right)_{b}$, then for any $t \in \mathbb{N}$, in base $(b+m t)$, the fraction $\frac{1}{m}$ has the digital representation

$$
\frac{1}{m}=\left(0 . a_{1}^{\prime} a_{2}^{\prime} \cdots a_{i}^{\prime} \cdots\right)_{b+m t}
$$

where $a_{i}^{\prime}=a_{i}+t k_{i}$ with $k_{i}=\left(b^{i-1}(\bmod m)\right)$.
Proof. By the lemma,

$$
\begin{aligned}
& a_{i}=\frac{b}{m}\left(b^{i-1}(\bmod m)\right)-\frac{1}{m}\left(b^{i}(\bmod m)\right), \text { and } \\
& a_{i}^{\prime}=\frac{b+m t}{m}\left((b+m t)^{i-1}(\bmod m)\right)-\frac{1}{m}\left((b+m t)^{i}(\bmod m)\right) .
\end{aligned}
$$

On the other hand, $(b+m t)^{i-1} \equiv b^{i-1}(\bmod m)$ and $(b+m t)^{i} \equiv b^{i}(\bmod m)$. Thus we get $a_{i}^{\prime}-a_{i}=t\left(b^{i-1}(\bmod m)\right)=t k_{i}$, as claimed.

Earlier we discussed $\frac{1}{7}$ in bases 3, 10, and 17. As a second example, consider the fraction $\frac{1}{4}$. According to the theorem, if we find the representation of $\frac{1}{4}$ in the bases $2,3,4$, and 5 , together with the corresponding keys, then we can easily get the digital representation of $\frac{1}{4}$ in any base. Recall that the key $\left\langle k_{1} \cdots k_{\ell}\right\rangle$ associated with $\frac{1}{m}$ in base b is defined by $k_{i}=\left(b^{i-1}(\bmod m)\right)$, where ℓ is either the length of the fundamental period of $\frac{1}{m}$ or the length of its nontrivial fractional part. Thus

$$
\begin{array}{ll}
\frac{1}{4}=(0.01)_{2} \rightarrow\langle 12\rangle, & \frac{1}{4}=(0 . \overline{02})_{3} \rightarrow\langle 13\rangle, \\
\frac{1}{4}=(0.1)_{4} \rightarrow\langle 1\rangle, & \frac{1}{4}=(0 . \overline{1})_{5} \rightarrow\langle 1\rangle .
\end{array}
$$

Hence, $\frac{1}{4}=(0.13)_{6}$ since $01+12=13$, and $\frac{1}{4}=0.25$ because $13+12=25$. Similarly, using $\langle 1\rangle$ as key, one gets for instance

$$
\frac{1}{4}=(0.2)_{8}, \quad \frac{1}{4}=(0.4)_{16}, \quad \text { and } \quad \frac{1}{4}=(0 . \overline{3})_{13}
$$

In particular, in base 2009, we have $\frac{1}{4}=(0 . \overline{[502]})_{2009}$.

References

1. J. Conway and R. Guy, The Book of Numbers, Copernicus, 1996.
2. L. E. Dickson, History of the Theory of Numbers, Vol. I: Divisibility and primality, Chelsea, 1966.
3. S. Guttman, On cyclic numbers, Amer. Math. Monthly 41 (1934) 159-166.

A Waiting-Time Surprise

Richard Parris (rparris@exeter.edu), Phillips Exeter Academy, Exeter, NH 03833
Let $x_{1}, x_{2}, x_{3}, \ldots$ be a sequence of numbers chosen randomly (and uniformly) from the unit interval $0<x<1$. For each real number $t \geq 0$, the first n for which

$$
x_{1}+x_{2}+\cdots+x_{n}>t
$$

is a waiting-time random variable; let $E(t)$ denote its expected value. In this note, we express $E(t)$ as a sum of elementary functions of t, and show that it is asymptotic to a linear function.

The data in Table 1 was generated by doing a million trials for each of four target values t. The frequency table shows how often each stopping index n was obtained, and the averages appear at the bottom.

Table 1.

n	$t=0.3$	$t=0.5$	$t=0.8$	$t=1.0$
1	699876	499770	198960	0
2	255258	375063	480625	499484
3	40345	104297	234716	334490
4	4171	18272	68642	124172
5	330	2358	14346	33533
6	20	222	2344	6987
7	0	18	326	1152
8	0	0	34	161
9	0	0	6	16
10	0	0	1	4
11	0	0	0	1
average	1.349881	1.649123	2.227338	2.718260

Based on this data, the following result appears plausible:
Theorem 1. For $0 \leq t \leq 1, E(t)=e^{t}$.
Proof. For each positive integer n, let $p_{n}(t)$ denote the probability that

$$
x_{1}+x_{2}+x_{3}+\cdots+x_{n-1} \leq t<x_{1}+x_{2}+x_{3}+\cdots+x_{n} .
$$

In other words, $p_{n}(t)$ is the probability that n is the waiting time for target t. It is not difficult to see that $p_{1}(t)=1-t$. In general, the polynomial formula

$$
p_{n}(t)=\frac{1}{(n-1)!} t^{n-1}-\frac{1}{n!} t^{n}
$$

applies for all $0 \leq t \leq 1$. Once this formula for $p_{n}(t)$ is established, it is a routine exercise to show that

$$
E(t)=\sum_{n=1}^{\infty} n \cdot p_{n}(t)=e^{t} .
$$

To establish the formula for $p_{n}(t)$, notice that $\frac{1}{(n-1)!} t^{n-1}$ is the volume of the ($n-1$)-dimensional polytope defined by the inequalities $x_{1} \geq 0, x_{2} \geq 0, \ldots$, $x_{n-1} \geq 0$, and $x_{1}+x_{2}+\cdots+x_{n-1} \leq t$. It is also the volume of the n-dimensional prism defined by the additional inequality $0 \leq x_{n} \leq 1$. This prism includes all positive
solutions to the inequality $x_{1}+x_{2}+\cdots+x_{n} \leq t$, whose probability is $\frac{1}{n!} t^{n}$. Thus

$$
\frac{1}{(n-1)!} t^{n-1}-\frac{1}{n!} t^{n}=p_{n}(t)
$$

is the probability that

$$
x_{1}+x_{2}+\cdots+x_{n-1} \leq t<x_{1}+x_{2}+\cdots+x_{n}
$$

The case $t=1$ will be familiar to many. It appeared as a Putnam problem in 1958 (see [1]), and a discrete version of the problem was analyzed by Shultz [2].

It is clear that $E(t)$ cannot be equal to e^{t} when t is large. Although the geometric approach used for $0 \leq t \leq 1$ can be modified to cover additional values of t, it is more efficient to assume that $E(t)$ is continuous for $t \geq 0$ and to apply the methods of calculus from now on. Our recursive approach is to observe that, for $t>1$,

$$
\begin{equation*}
E(t)=1+\int_{t-1}^{t} E(u) d u \tag{1}
\end{equation*}
$$

In other words, $E(t)$ is 1 more than the simple average of all the expected waiting times $E\left(t-x_{1}\right)$ that could result from choosing x_{1}; we obtain the integral equation by replacing $t-x_{1}$ by u. When applied to (1), the Fundamental Theorem of Calculus gives

$$
\begin{equation*}
E^{\prime}(t)=E(t)-E(t-1) \tag{2}
\end{equation*}
$$

Notice that our result $E(t)=e^{t}$ for $0 \leq t<1$ also follows from (2) if we use the obvious values $E(t)=0$ for $t<0$ to extend the definition of E.

We now outline an inductive proof that, for $n \geq 1$ and $n-1 \leq t \leq n$,

$$
\begin{equation*}
E(t)=\sum_{k=0}^{n-1}(-1)^{k} \frac{e^{t-k}}{k!}(t-k)^{k} \tag{3}
\end{equation*}
$$

The upper limit of this sum shows that only those terms for which $t-k$ is nonnegative are included. Assume first that $1<t \leq 2$, where we know that $E(t-1)=e^{t-1}$. It is a straightforward application of (2) to show that $\frac{d}{d t}\left(e^{-t} E(t)\right)=-e^{-1}$. From this it follows that $E(t)=e^{t}-(t-1) e^{t-1}$, because E is continuous at $t=1$ and $E(1)=e$. Thus (3) holds for $n=1$. The induction step follows similarly and is left to the reader.

The jump discontinuity at $t=0$ forces E to be nondifferentiable at $t=1$ (the two one-sided derivatives are e from the left and $e-1$ from the right), but formula (3) shows that E is differentiable everywhere else. If $n>1$, the difference between the two formulas for $E(n)$ is divisible by $(t-n)^{2}$, forcing the two one-sided formulas for $E^{\prime}(n)$ to agree.

The recursive process makes use of the continuity of E when t is a positive integer. The values $E(n)$ are interesting:

$$
\begin{aligned}
& E(1)=2.71828182 \ldots \\
& E(2)=4.67077427 \ldots \\
& E(3)=6.66656564 \ldots \\
& E(4)=8.66660449 \ldots \\
& E(5)=10.6666620 \ldots
\end{aligned}
$$

Moreover, the emerging pattern is not confined to integer values of t, as the example $E(4.85)=10.366656 \cdots=2(4.85)+0.666656 \ldots$ shows. The main purpose of this note is to establish the following asymptotic result:

Theorem 2. The function E defined by equation (3) satisfies $\lim _{t \rightarrow \infty}(E(t)-2 t)=\frac{2}{3}$.
Equation (3) does not seem to be of much help in establishing the asymptotic behavior of $E(t)$, but the integral equation (1) and the derived equation (2) do pay dividends. Notice, in particular, that the derivatives of E also satisfy (2). This suggests that we look for an integral equation, similar to (1), that applies to them.

We are thus led to consider functions f that have the average-value property, which means that f is continuous for $t \geq 1$ and $f(t)=\int_{t-1}^{t} f(u) d u$ holds for $t \geq 2$. Unless f is constant, it is clear that f must attain values above and below $f(t)$ on the interval ($t-1, t$). It is plausible that the continuous averaging process dissipates this variability, forcing $f(t)$ to approach a limit as $t \rightarrow \infty$. (Since we expect $f=E^{\prime}$ to approach a limit, this is exactly what we want to happen.) Furthermore, this limit (if it exists) is determined by the values of f on any unit interval, and it is therefore reasonable to try to express the limit as a weighted average of these values. The recursive nature of f suggests that the weighting function should increase linearly, starting with 0 at the lower limit of the integral. In the trivial case where f is constant, it is easily seen that the formula $\int_{t-1}^{t} 2(u-t+1) f(u) d u$ produces the correct value. Furthermore, for all functions of interest, the value produced by this integration formula does not depend on the choice of interval:

Lemma 1. Assume that the continuous function f has the average-value property. Then the function $F(t)=\int_{t-1}^{t}(u-t+1) f(u) d u$ is constant for $t \geq 2$.

Proof. As above, the Fundamental Theorem of Calculus yields $f^{\prime}(t)=f(t)-$ $f(t-1)$ for $t \geq 2$. Notice that $F(t)=\int_{t-1}^{t} u f(u) d u-(t-1) f(t)$. A short calculation now shows that $F^{\prime}(t)=0$.

It is shown next that the common value of these integrals is the desired limit.
Lemma 2. If f has the average-value property, then

$$
\lim _{t \rightarrow \infty} f(t)=\int_{1}^{2} 2(u-a) f(u) d u
$$

Proof. Let $L=\int_{1}^{2} 2(u-a) f(u) d u$, and let $g(t)=f(t)-L$. It is routine to verify that g also has the average-value property, and that $\int_{1}^{2} 2(u-a) g(u) d u=0$, so there is no loss of generality in assuming that $L=0$. Furthermore, nothing is lost by assuming that $f(t)$ is not constant. In this case, Lemma 1 implies that f has both positive and negative values on every interval of length 1 .

We now show that the maxima and minima of f on the intervals $I_{n}=[n-1, n]$ approach 0 as $n \rightarrow \infty$, and from this the lemma follows. Since the two arguments are essentially the same, it suffices to give only one.

Let $M_{n}=f\left(a_{n}\right)$ be the maximum value of f on I_{n}. It follows from (2) and the differentiability of f that $f\left(a_{n}-1\right)=f\left(a_{n}\right)$, and so $M_{n-1} \geq M_{n}$. The non-increasing
sequence $\left\{M_{n}\right\}$ is bounded below by 0 , thus it must have a limit $M \geq 0$. Suppose that $M>0$. For sufficiently large $t, M \leq f(t)<2 M$. From

$$
f(t)=\int_{t-1}^{t} f(u) d u \quad \text { and } \quad \int_{t-1}^{t}(u-t+1) f(u) d u=0
$$

it follows that

$$
f(t)=\int_{t-1}^{t}(t-u) f(u) d u<2 M \int_{t-1}^{t}(t-u) d u=M
$$

which contradicts the definition of M.
Corollary. Let F be continuous for $t \geq 0$, and let k be constant. If

$$
F(t)=k+\int_{t-1}^{t} F(u) d u
$$

for all $t \geq 1$, then

$$
\lim _{t \rightarrow \infty}(F(t)-2 k t)=-\frac{4 k}{3}+\int_{0}^{1} 2 u F(u) d u
$$

Proof. We first apply Lemma 2 to the function $f(t)=F^{\prime}(t)$, which is easily seen to have the average-value property. A routine integration by parts leads us to

$$
\lim _{t \rightarrow \infty} F^{\prime}(t)=\int_{1}^{2} 2(u-1) F^{\prime}(u) d u=2 k
$$

Another short calculation shows that $g(t)=F(t)-2 k t$ also has the average-value property. It therefore follows from Lemma 2 that

$$
\begin{aligned}
\lim _{t \rightarrow \infty}(F(t)-2 k t) & =\int_{1}^{2} 2(u-1)(F(u)-2 k u) d u \\
& =\int_{1}^{2} 2(u-1)\left(F^{\prime}(u)+F(u-1)-2 k u\right) d u \\
& =-\frac{4 k}{3}+\int_{0}^{1} 2 w F(w) d w
\end{aligned}
$$

Finally, we return to the objective function E expressed in equation (3). Because E satisfies (1), the conclusion of Theorem 2 follows from the corollary and the easily verified calculation

$$
-\frac{4}{3}+\int_{0}^{1} 2 u e^{u} d u=\frac{2}{3}
$$

References

1. L. E. Bush, The William Lowell Putnam Competition, Amer. Math. Monthly 68 (1961) 18-33.
2. Harris S. Shultz, An Expected Value Problem, Two-Year College Math. J. 10 (1979) 277-278.
