
Theorem. Let b and m be integers greater than 1. If 1
m = (0. a1a2 · · · ai · · · )b, then

for any t ∈ N, in base (b + mt), the fraction 1
m has the digital representation

1
m = (0. a′

1a′
2 · · · a′

i · · · )b+mt ,

where a′
i = ai + tki with ki = (bi−1 (mod m)).

Proof. By the lemma,

ai = b

m
(bi−1 (mod m)) − 1

m
(bi (mod m)), and

a′
i = b + mt

m
((b + mt)i−1 (mod m)) − 1

m
((b + mt)i (mod m)).

On the other hand, (b + mt)i−1 ≡ bi−1 (mod m) and (b + mt)i ≡ bi (mod m). Thus
we get a′

i − ai = t (bi−1 (mod m)) = tki , as claimed.

Earlier we discussed 1
7 in bases 3, 10, and 17. As a second example, consider the

fraction 1
4 . According to the theorem, if we find the representation of 1

4 in the bases
2, 3, 4, and 5, together with the corresponding keys, then we can easily get the digital
representation of 1

4 in any base. Recall that the key 〈k1 · · · k�〉 associated with 1
m in base

b is defined by ki = (bi−1 (mod m)), where � is either the length of the fundamental
period of 1

m or the length of its nontrivial fractional part. Thus

1
4 = (0.01)2 → 〈12〉, 1

4 = (0.02)3 → 〈13〉,
1
4 = (0.1)4 → 〈1〉, 1

4 = (0.1)5 → 〈1〉.
Hence, 1

4 = (0.13)6 since 01 + 12 = 13, and 1
4 = 0.25 because 13 + 12 = 25. Simi-

larly, using 〈1〉 as key, one gets for instance

1
4 = (0.2)8,

1
4 = (0.4)16, and 1

4 = (0.3)13.

In particular, in base 2009, we have 1
4 = (0.[502])2009.
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◦

A Waiting-Time Surprise
Richard Parris (rparris@exeter.edu), Phillips Exeter Academy, Exeter, NH 03833

Let x1, x2, x3, . . . be a sequence of numbers chosen randomly (and uniformly) from
the unit interval 0 < x < 1. For each real number t ≥ 0, the first n for which
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x1 + x2 + · · · + xn > t

is a waiting-time random variable; let E(t) denote its expected value. In this note, we
express E(t) as a sum of elementary functions of t , and show that it is asymptotic to a
linear function.

The data in Table 1 was generated by doing a million trials for each of four target
values t . The frequency table shows how often each stopping index n was obtained,
and the averages appear at the bottom.

Table 1.

n t = 0.3 t = 0.5 t = 0.8 t = 1.0

1 699876 499770 198960 0
2 255258 375063 480625 499484
3 40345 104297 234716 334490
4 4171 18272 68642 124172
5 330 2358 14346 33533
6 20 222 2344 6987
7 0 18 326 1152
8 0 0 34 161
9 0 0 6 16

10 0 0 1 4
11 0 0 0 1

average 1.349881 1.649123 2.227338 2.718260

Based on this data, the following result appears plausible:

Theorem 1. For 0 ≤ t ≤ 1, E(t) = et .

Proof. For each positive integer n, let pn(t) denote the probability that

x1 + x2 + x3 + · · · + xn−1 ≤ t < x1 + x2 + x3 + · · · + xn.

In other words, pn(t) is the probability that n is the waiting time for target t . It is not
difficult to see that p1(t) = 1 − t . In general, the polynomial formula

pn(t) = 1

(n − 1)! tn−1 − 1

n! tn

applies for all 0 ≤ t ≤ 1. Once this formula for pn(t) is established, it is a routine
exercise to show that

E(t) =
∞∑

n=1

n · pn(t) = et .

To establish the formula for pn(t), notice that 1
(n−1)! tn−1 is the volume of the

(n − 1)-dimensional polytope defined by the inequalities x1 ≥ 0, x2 ≥ 0, . . . ,

xn−1 ≥ 0, and x1 + x2 + · · · + xn−1 ≤ t . It is also the volume of the n-dimensional
prism defined by the additional inequality 0 ≤ xn ≤ 1. This prism includes all positive
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solutions to the inequality x1 + x2 + · · · + xn ≤ t , whose probability is 1
n! tn . Thus

1

(n − 1)! tn−1 − 1

n! tn = pn(t)

is the probability that

x1 + x2 + · · · + xn−1 ≤ t < x1 + x2 + · · · + xn.

The case t = 1 will be familiar to many. It appeared as a Putnam problem in 1958
(see [1]), and a discrete version of the problem was analyzed by Shultz [2].

It is clear that E(t) cannot be equal to et when t is large. Although the geometric
approach used for 0 ≤ t ≤ 1 can be modified to cover additional values of t , it is
more efficient to assume that E(t) is continuous for t ≥ 0 and to apply the methods of
calculus from now on. Our recursive approach is to observe that, for t > 1,

E(t) = 1 +
∫ t

t−1
E(u) du. (1)

In other words, E(t) is 1 more than the simple average of all the expected waiting
times E(t − x1) that could result from choosing x1; we obtain the integral equation
by replacing t − x1 by u. When applied to (1), the Fundamental Theorem of Calculus
gives

E ′(t) = E(t) − E(t − 1). (2)

Notice that our result E(t) = et for 0 ≤ t < 1 also follows from (2) if we use the
obvious values E(t) = 0 for t < 0 to extend the definition of E .

We now outline an inductive proof that, for n ≥ 1 and n − 1 ≤ t ≤ n,

E(t) =
n−1∑
k=0

(−1)k et−k

k! (t − k)k . (3)

The upper limit of this sum shows that only those terms for which t − k is nonnegative
are included. Assume first that 1 < t ≤ 2, where we know that E(t − 1) = et−1. It
is a straightforward application of (2) to show that d

dt

(
e−t E(t)

) = −e−1. From this it
follows that E(t) = et − (t − 1)et−1, because E is continuous at t = 1 and E(1) = e.
Thus (3) holds for n = 1. The induction step follows similarly and is left to the reader.

The jump discontinuity at t = 0 forces E to be nondifferentiable at t = 1 (the two
one-sided derivatives are e from the left and e − 1 from the right), but formula (3)
shows that E is differentiable everywhere else. If n > 1, the difference between the
two formulas for E(n) is divisible by (t − n)2, forcing the two one-sided formulas for
E ′(n) to agree.

The recursive process makes use of the continuity of E when t is a positive integer.
The values E(n) are interesting:

E(1) = 2.71828182 . . .

E(2) = 4.67077427 . . .

E(3) = 6.66656564 . . .

E(4) = 8.66660449 . . .

E(5) = 10.6666620 . . .
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Moreover, the emerging pattern is not confined to integer values of t , as the example
E(4.85) = 10.366656 · · · = 2(4.85) + 0.666656 . . . shows. The main purpose of this
note is to establish the following asymptotic result:

Theorem 2. The function E defined by equation (3) satisfies lim
t→∞(E(t) − 2t) = 2

3
.

Equation (3) does not seem to be of much help in establishing the asymptotic behav-
ior of E(t), but the integral equation (1) and the derived equation (2) do pay dividends.
Notice, in particular, that the derivatives of E also satisfy (2). This suggests that we
look for an integral equation, similar to (1), that applies to them.

We are thus led to consider functions f that have the average-value property, which
means that f is continuous for t ≥ 1 and f (t) = ∫ t

t−1 f (u) du holds for t ≥ 2. Unless
f is constant, it is clear that f must attain values above and below f (t) on the interval
(t − 1, t). It is plausible that the continuous averaging process dissipates this variabil-
ity, forcing f (t) to approach a limit as t → ∞. (Since we expect f = E ′ to approach
a limit, this is exactly what we want to happen.) Furthermore, this limit (if it exists)
is determined by the values of f on any unit interval, and it is therefore reasonable to
try to express the limit as a weighted average of these values. The recursive nature of
f suggests that the weighting function should increase linearly, starting with 0 at the
lower limit of the integral. In the trivial case where f is constant, it is easily seen that
the formula

∫ t
t−1 2(u − t + 1) f (u) du produces the correct value. Furthermore, for all

functions of interest, the value produced by this integration formula does not depend
on the choice of interval:

Lemma 1. Assume that the continuous function f has the average-value property.
Then the function F(t) = ∫ t

t−1(u − t + 1) f (u) du is constant for t ≥ 2.

Proof. As above, the Fundamental Theorem of Calculus yields f ′(t) = f (t) −
f (t − 1) for t ≥ 2. Notice that F(t) = ∫ t

t−1 u f (u) du − (t − 1) f (t). A short calcu-
lation now shows that F ′(t) = 0.

It is shown next that the common value of these integrals is the desired limit.

Lemma 2. If f has the average-value property, then

lim
t→∞ f (t) =

∫ 2

1
2(u − a) f (u) du.

Proof. Let L = ∫ 2
1 2(u − a) f (u) du, and let g(t) = f (t) − L . It is routine to verify

that g also has the average-value property, and that
∫ 2

1 2(u − a)g(u) du = 0, so there is
no loss of generality in assuming that L = 0. Furthermore, nothing is lost by assuming
that f (t) is not constant. In this case, Lemma 1 implies that f has both positive and
negative values on every interval of length 1.

We now show that the maxima and minima of f on the intervals In = [n − 1, n]
approach 0 as n → ∞, and from this the lemma follows. Since the two arguments are
essentially the same, it suffices to give only one.

Let Mn = f (an) be the maximum value of f on In. It follows from (2) and the
differentiability of f that f (an − 1) = f (an), and so Mn−1 ≥ Mn . The non-increasing
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sequence {Mn} is bounded below by 0, thus it must have a limit M ≥ 0. Suppose that
M > 0. For sufficiently large t , M ≤ f (t) < 2M . From

f (t) =
∫ t

t−1
f (u) du and

∫ t

t−1
(u − t + 1) f (u) du = 0,

it follows that

f (t) =
∫ t

t−1
(t − u) f (u) du < 2M

∫ t

t−1
(t − u) du = M,

which contradicts the definition of M .

Corollary. Let F be continuous for t ≥ 0, and let k be constant. If

F(t) = k +
∫ t

t−1
F(u) du

for all t ≥ 1, then

lim
t→∞(F(t) − 2kt) = −4k

3
+

∫ 1

0
2uF(u) du.

Proof. We first apply Lemma 2 to the function f (t) = F ′(t), which is easily seen
to have the average-value property. A routine integration by parts leads us to

lim
t→∞ F ′(t) =

∫ 2

1
2(u − 1)F ′(u) du = 2k.

Another short calculation shows that g(t) = F(t) − 2kt also has the average-value
property. It therefore follows from Lemma 2 that

lim
t→∞(F(t) − 2kt) =

∫ 2

1
2(u − 1)(F(u) − 2ku) du

=
∫ 2

1
2(u − 1)(F ′(u) + F(u − 1) − 2ku) du

= −4k

3
+

∫ 1

0
2wF(w) dw.

Finally, we return to the objective function E expressed in equation (3). Because
E satisfies (1), the conclusion of Theorem 2 follows from the corollary and the easily
verified calculation

−4

3
+

∫ 1

0
2ueu du = 2

3
.
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