orderings of a Grey Code arrangement are possible, i.e., the number of sign changes in the components between two adjacent vectors including the last with the first is exactly one. For example in E^{3}, we have the ordering

$$
\begin{aligned}
& (1,1,1),(1,-1,1),(-1,-1,1),(-1,1,1),(-1,1,-1) \\
& \quad(-1,-1,-1),(1,-1,-1),(1,1,-1) .
\end{aligned}
$$

This ordering works since the third components are in monotonic order. One can also show that the cyclic permutations of these 8 vectors are all possible orderings. Is this also true in E^{n} ?

Acknowledgement. The author is grateful to the referees for a number of helpful suggestions.

A Coordinate Approach to the AM-GM Inequality

NORMAN SCHAUMBERGER
Hofstra University
Hempstead, NY 11550

Let $a_{1}, a_{2}, \ldots, a_{n}$ be n positive numbers with arithmetic mean A and geometric mean G. The $A M-G M$ Inequality states that $A \geqslant G$ with equality if and only if $a_{1}=a_{2}=\cdots=a_{n}$.

The graph of $y=e^{x / G}$ is concave upward and thus the tangent line $y=(e x / G)$ at (G, e) lies below the curve. To show $A \geqslant G$, we substitute $x=a_{i}(i=1,2, \ldots, n)$ successively into $e^{x / G} \geqslant(e x / G)$ and multiply. Hence

$$
e^{\left(a_{1}+a_{2}+\cdots+a_{n}\right) / G} \geqslant\left(\frac{e a_{1}}{G}\right)\left(\frac{e a_{2}}{G}\right) \cdots\left(\frac{e a_{n}}{G}\right)=e^{n} .
$$

Thus, we have $n A / G \geqslant n$ or $A \geqslant G$, with equality if and only if $a_{1}=a_{2}=\cdots=a_{n}$ $=G$.

Acknowledgement. This proof is a geometric variation of the proof suggested by G. L. Alexanderson to Ivan Niven in Maxima and Minima Without Calculus, MAA, 1981, pp. 240-241.

