but the following easy observation does help: all r, must be equal. For if r,=a #
=r;, then af <(a+ B)2/4, and a more efficient partition can be gotten by
replacing 7; and r; by (a + 8)/2.

Knowing that all partition parts must be equal allows us to rephrase Question 2
as follows.

Question 3. Given the positive real number r, what is the positive integer k such that
(r/k)* is as large as possible?

Question 3 is completely equivalent to Question 2, but its formulation suggests a
generalization not allowed by the language of Question 2. In particular, why should
k be forced to take on integer values?

Question 4. Given the positive real number r, what is the positive real number x such
that (r/x)* is as large as possible?

Now, Question 4 may be answered easily by techniques of elementary calculus. Set
y=(r/x)* for x >0, where r >0 is fixed. Use logarithmic differentiation to obtain
y' = (r/x)*(In(r/x) — 1), which shows that y is increasing for 0 < x < r/e, decreas-
ing for x > r/e, and maximum for x = r/e. Hence, for fixed r, the maximum value
of (r/x)* is e’/*. If one chooses, in the setting of Question 4, to retain the partition
language of the earlier questions, then one may say that in the most efficient
partition, each “part” should be equal to e.

Returning to Question 3 (= Question 2), we note that the behaviour of the
function y near r/e allows only two possible choices for k. Of course, in the happy
instance where r/e is an integer, the answer to Question 3 is r/e. When r/e is not
integral, one of the two nearest integers surrounding r/e must be the optimal value
of k. In any case, nearness of k to r/e translates into nearness of »/k to e. In other
words, the pieces of the partition should be close to e, as Honsberger suggested.

Let us reformulate our solution to Question 4.

Theorem. If x and y are positive real numbers whose product is r, then the maximum
value of y* is e'/".

Note that this theorem provides a quick solution to an old favorite recreational
problem: Which is larger, e” or #°? One solution is to let r=me and apply the
Theorem. The larger number is e”. For other solutions to this problem, see R.
Honsberger’s Mathematical Morsels, MAA, 1978, or E. Just and N. Schaumberger’s
“Two More Proofs of a Familiar Inequality” [TYCMJ 6 (May 1975) 45].

Finally, we mention that the monotone nature of y =(r/x)* on the intervals
(0, r/e) and (r/e, o0) implies that for ¢ < d we have ¢ <d° if d<e, and c¢?> d° if
e <c¢. For another recent proof of this fact, see J. Rosendahl and J. Gilmore’s
“Comparing B4 and A% for A > B” [CMJ 18 (January 1987) 50].

o

The Relationship Between Hyperbolic and Exponential Functions
Roger B. Nelsen, Lewis and Clark College, Portland, OR

In most calculus texts, therefore presumably in most calculus courses, hyperbolic
functions are defined in terms of exponential functions: cosh = (e + e=?%)/2 and
sinh 6 = (e’ — e7%) /2. Then certain identities are verified, and the source of the
name “hyperbolic” is revealed: the points (coshd,sinh@) lie on the right-hand
branch of the unit hyperbola x? — y%?=1. What seems to be unjustified or lacking
here is a rationale for choosing these particular combinations of exponential
functions for defining cosh@ and sinh§.
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To answer this, first recall that the circular functions are generally defined as
coordinates of points on the unit circle. If 8 represents the radian measure of the
signed angle from the positive x-axis to the radius drawn to a point P on the unit
circle, then the coordinates of P are defined to be (cos 8, sin 8). This is equivalent to
denoting by 6/2 the signed area of the circular sector swept out by the radius OP
(Figure 1).

P(cosh@,sinh 8)

0 . 0(1,0) A

Figure 1. Figure 2.

It is well known that there is an analogous relationship between hyperbolic
functions and areas of hyperbolic sectors (see, for example, B. M. Saler’s “Inverse
Hyperbolic Functions as Areas” [CMJ 16 (March 1985) 128-131]). If /2 denotes
the signed area of the region swept out by the “radius” OP to the right-hand branch
of the hyperbola x?—y? =1 (the area is taken to be positive when P is in the first
quadrant and negative when P is in the fourth quadrant), then the coordinates of P
define the hyperbolic functions, as in Figure 2.

Now, let us pursue this further. Since we already have cosh?@ — sinh?8 = 1, we
seek a second equation involving coshé and sinhf. Figure 2 suggests finding an
alternate expression for the area 6 /2 of the shaded hyperbolic sector, or for the area

L h 6§ sinh 4 ! 0
5 coshfsi 5
of the unshaded portion of AOAP. As we shall see, a 45° counterclockwise rotation
of the shaded region in Figure 2 (or, equivalently, a 45° clockwise rotation of the
axes) yields a region whose area can be evaluated easily by use of the natural
logarithm function. Since the area of a region is unchanged by such a rotation, this
will provide us with a second expression for /2 as a natural logarithm function of
cosh@ and sinh 6. )

With standard results on rotation of axes, the new x — y coordinates after the 45°
rotation are related to the original x — y coordinates by

=g—(x—y) )7=72(x+y).

=

If necessary, this transformation can be easily derived. But perhaps the geometric
“proof without words” illustrated in Figure 3 is sufficient at this time, leaving the
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general case until later in the course.

P=(x,y)
_ 2
~ PR L OP, |OR| = —-| 0P| y
P
______ 2
‘I::T ol [2_ E a=£(cosh0—sinh6')
. Xy 5 2
: 2 2_ P(a,b)
! AOSR=ARTP b= ——(cosh + sinh )
s ’
y SP= T(x_y)’—Z‘(x+y)
|
|
|
! P
|
J
TR 7=
1
]
45° '
]
'
o T x
B s 0 B C 1
Figure 3. Figure 4.

After the rotation by 45°, we have the situation illustrated in Figure 4.
Now the area 6/2 of the shaded sector can be expressed as (replacing x by x in the
integral)

0 il _ _
—= —dx+ - .
5 fa . dx + area (AOPB) — area (A0QC)

Since the area of each triangle is 1/4, the area of the shaded sector is precisely the
area under the hyperbola from P to Q, and, hence,

6= j;ﬁﬂ% dx=mn(y2 /2) — In(a)

= —In(cosh 6 — sinh ).
Recalling that (cosh@,sinh#) lies on x2—y? =1, we thus have the system
cosh?§ — sinh? =1
coshf — sinh§ = e~".

This has as solution the familiar expressions, coshf = (e +e~?)/2 and sinhf =
(e® — e=%) /2, for the hyperbolic cosine and sine.

o

Another Proof of the Inequality Between Power Means
Norman Schaumberger, Bronx Community College, Bronx, NY

The arithmetic-quadratic mean inequality states that for positive numbers

ag, ag,..., 4,

alz+a§+--- +a,2, 172 a,ta,+ - +a

> -, (1)

n n

with equality holding if and only if @, =a,= --- =a,. The standard proofs of (1)
usually involve considerable algebra or the method of forward and backward
induction. [See, for example, N. N. Chentzof, D. O. Shklarsky, and I. M. Yaglom,

56



	Article Contents
	p. 54
	p. 55
	p. 56

	Issue Table of Contents
	College Mathematics Journal, Vol. 19, No. 1, Jan., 1988
	Front Matter [pp.  1 - 2]
	Forum
	Should Mathematicians Teach Statistics? [pp.  3 - 7]
	Should Mathematicians Teach Statistics? [pp.  8 - 10]
	No! But Who Should Teach Statistics? [pp.  11 - 12]
	Statistics Teachers Need Experience with Data [pp.  12 - 14]
	The Mathematicians' Statistics Has a Subsidiary Role [pp.  14 - 15]
	Growth and Advances in Statistics [pp.  15 - 16]
	Statistician, Examine Thyself [pp.  16 - 18]
	It's Not "By Whom," But Rather "How" [pp.  18 - 20]
	The Need for Good Teaching of Statistics [pp.  20 - 21]
	Let the Experts Teach and Judge [pp.  21 - 23]
	Who Teaches What to Whom? [pp.  24 - 25]
	What Should the Introductory Statistics Course Contain? [pp.  26 - 29]
	Mathematics Is Only One Tool That Statisticians Use [pp.  30 - 32]
	David Moore's Response [pp.  32 - 34]
	The Editor's Concluding Remarks [pp.  34 - 35]

	How to Define an Irregular Graph [pp.  36 - 42]
	A Clamped Simpson's Rule [pp.  43 - 52]
	Classroom Capsules
	On Partitioning a Real Number [pp.  53 - 54]
	The Relationship between Hyperbolic and Exponential Functions [pp.  54 - 56]
	Another Proof of the Inequality between Power Means [pp.  56 - 58]
	A Nonstandard Approach to Cramer's Rule [pp.  59 - 60]
	Pascal Triangles and Combinations Where Repetitions Are Allowed [pp.  60 - 62]

	Computer Corner
	Why Should We Pivot in Gaussian Elimination? [pp.  63 - 72]
	Algorithm of the Bi-Month: Drawing a Circle [pp.  72 - 78]

	Software Reviews [pp.  78 - 80]
	Problems [pp.  81 - 87]
	Media Highlights [pp.  88 - 93]
	Book Reviews
	untitled [pp.  94 - 95]

	Back Matter



