good student will notice that $A-\mu_{k} I$ is nearly singular and wonder if that causes the Rayleigh quotient iteration to be unstable. Stewart [3] explains why this is not a problem.

The Rayleigh quotient iteration is a simple algorithm which rapidly estimates eigenvalues. The accuracy can even be guaranteed! There are easy algorithms for finding eigenvalues.

REFERENCES

1. J. J. Dongarra and D. C. Sorensen, A fast algorithm for the symmetric eigenvalue problem. Proceedings of the 7th Symposium on Computer Arithmetic, Univ. of Illinois, IEEE Computer Society, June 1985.
2. Ben Noble, Applied Linear Algebra, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1969.
3. G. W. Stewart, Introduction to Matrix Computations, Academic Press, New York, 1973.
4. Gilbert Strang, Linear Algebra and Its Applications, 2nd edition, Academic Press, New York, 1976.
5. Gareth Williams and Donna Williams, The power method for finding eigenvalues on a microcomputer, Amer. Math. Monthly 93 (1986), 562-565.

Proof without Words: Squares of Triangular Numbers

$$
t_{n}^{2}=(1+2+\cdots+n)^{2}=1^{3}+2^{3}+\cdots+n^{3}
$$

-Roger B. Nelsen
Lewis and Clark College

