For example, if $g(x)=x^{10}$, then

$$
f(x)=\frac{1}{2} \int\left(x^{10}-\frac{1}{x^{10}}\right) d x=\frac{x^{11}}{22}+\frac{1}{18 x^{9}}(+C)
$$

Or try $g(x)=\tan x$. Then the indefinite integral for $f(x)$ can be computed, using some trig identities, as

$$
\begin{aligned}
\frac{1}{2} \int(\tan x-\cot x) d x & =\frac{1}{2}\left(-\ln \left(\frac{1}{2} \sin 2 x\right)\right)+C \\
& =-\frac{1}{2} \ln (\sin 2 x)-\frac{1}{2} \ln \left(\frac{1}{2}\right)+C
\end{aligned}
$$

By ignoring the constants, we can choose $f(x)=\frac{1}{2} \ln (\sin 2 x)$. However, although $f^{\prime}(x)^{2}+1$ will not then equal $\left(\frac{1}{2}\left(g(x)+\frac{1}{g(x)}\right)\right)^{2}$, things still come out nicely:

$$
\begin{aligned}
\int \sqrt{\left(f^{\prime}(x)\right)^{2}+1} d x & =\int \sqrt{\cot ^{2} 2 x+1} d x=\int \csc 2 x d x \\
& =-\frac{1}{2} \ln |\csc 2 x+\cot 2 x|+C \quad\left(\text { for } 0 \leq x \leq \frac{\pi}{2}\right)
\end{aligned}
$$

We invite the reader to experiment with this algorithm and discover other examples.

References

1. C. H. Edwards and D. E. Penney, Calculus, 6th ed., Prentice Hall, 2002.
2. G. B. Thomas, Jr., R. L. Finney, M. D. Weir, and F. R. Giordano, Thomas' Calculus, 10th ed., Addison-Wesley, 2001.

Arc Length and Pythagorean Triples

Courtney Moen (chm@usna.edu), United States Naval Academy, Annapolis, MD 21402

In this note we give an example of how a computer algebra system can offer surprises even in the context of a standard calculus topic. When introducing the formula for arc length, some natural examples are the curves C_{n} which are given parametrically by $x=t^{n}, y=t^{n+1}, 0 \leq t \leq 1$, (n is a positive integer). Many students have difficulty computing even the length of C_{1} by hand, so this is a natural place to use a computer algebra system. The length of C_{5}, for example, is

$$
\frac{3431 \sqrt{61}}{20736}+\frac{15625}{124416} \ln 5-\frac{15625}{124416} \ln (-6+\sqrt{61})
$$

As n increases, the results become increasingly unpleasant until, surprisingly, we find that the length of C_{20} is rational and equals $\frac{36495661067145135829027}{25798674916142804999323}$.

It is easy to see why this is so and to show that infinitely many of the lengths $L\left(C_{n}\right)$ are rational numbers. Using the standard formula $L=\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$ for arc length, we have

$$
L\left(C_{n}\right)=\int_{0}^{1} t^{n-1} \sqrt{n^{2}+(n+1)^{2} t^{2}} d t
$$

After we make the successive substitutions $u=\frac{n+1}{n} t$ and $v=\sqrt{u^{2}+1}$, the integrand becomes $\left(v^{2}-1\right)^{(n-2) / 2} v^{2}$.

We now take n to be even, say $n=2 k$. Then our integrand is just a finite sum of integer multiples of powers of v; that is,

$$
\left(v^{2}-1\right)^{(n-2) / 2} v^{2}=\sum_{j=1}^{k} c_{2 j} v^{2 j}
$$

for some integers $c_{2}, c_{4}, \ldots, c_{2 k}$. Integrating and substituting back, we find that

$$
L\left(C_{n}\right)=\left.\frac{n^{n+1}}{(n+1)^{n}} \sum_{j=1}^{k} \frac{c_{2 j}}{2 j+1}\left(u^{2}+1\right)^{(2 j+1) / 2}\right|_{0} ^{n+1}
$$

and hence that

$$
L\left(C_{n}\right)=\frac{n^{n+1}}{(n+1)^{n}} \sum_{j=1}^{n / 2} \frac{c_{2 j}}{2 j+1}\left(\left(\frac{\sqrt{(n+1)^{2}+n^{2}}}{n}\right)^{2 j+1}-1\right)
$$

This will be rational if $n^{2}+(n+1)^{2}$ is a perfect square; that is, if n and $n+1$ are part of a Pythagorean triple. It is well known that there are infinitely many such pairs (see, for example [1, p. 164, Exer. 17]). In particular, if $(a, a+1, c)$ is a Pythagorean triple, so is $(3 a+2 c+1,3 a+2 c+2,4 a+3 c+2)$. Note that the parity of the first term switches, so that by using this result twice we can go from one even case to another. Consequently, not only does C_{20} have a rational length, so does C_{696}, and also infinitely many other curves C_{n}.

References

1. J. K. Strayer, Elementary Number Theory, PWS Publishing, 1994.

On the Convergence of Some Modified p-Series

Dongling Deng (0310251@mail.nankai.edu.cn), Nankai University, China
The series we consider, which we call (S, p)-series, are obtained from the p-series $\sum_{n=1}^{\infty} \frac{1}{n p}$ by removing all those terms in which the base n in the denominator contains a digit in a specified set S. For example, if $S=\{1,2\}$, then our series is

$$
\frac{1}{3^{p}}+\frac{1}{4^{p}}+\cdots+\frac{1}{9^{p}}+\frac{1}{30^{p}}+\frac{1}{33^{p}}+\frac{1}{34^{p}}+\cdots+\frac{1}{40^{p}}+\frac{1}{43^{p}}+\frac{1}{44^{p}}+\cdots
$$

