NOTES

Algebraic Set Operations, Multifunctions, and Indefinite Integrals

MILAN V. JOVANOVIĆ Matematički Institut Kneza Mihaila 35 Beograd, Yugoslavia

> VESELIN M. JUNGIĆ Simon Fraser University Burnaby, B.C., Canada

The fact that an indefinite integral is a set of functions is often ignored, perhaps because of the apparent simplicity of the situation. However, if we regard

$$\int \frac{dx}{x}$$
 or $\int \frac{\cos x}{\sin x} dx$

as functions, we can easily develop fallacious proofs of such "identities" as 0 = 1.

In this note we introduce a semigroup operation on the set of all nonempty subsets of a vector space. Then we indicate how the indefinite integral can be viewed as a set-valued function (or *multifunction*) and how this point of view avoids the fallacies mentioned above. Finally, we show how the multifunction given by the indefinite integral induces a linear function on the space of continuous functions.

Algebraic set operations Let X be a vector space over the real numbers, and let P(X) denote the family of all nonempty subsets of X. We define addition and scalar multiplication on the family P(X) by

$$A + B = \{a + b : a \in A, b \in B\}$$

and

$$\alpha A = \{ \alpha a \colon a \in A \},\,$$

where $A, B \in P(X)$ and $\alpha \in \mathbb{R}$. In particular, A - B = A + (-1)B. These are called *algebraic set operations*. Notice that (P(X), +) is not a group if $X \neq \{0\}$. Indeed, $\{0\}$ is the neutral element in (P(X), +), and for every $A \in P(X)$

$$A + X = X$$

so X has no inverse element. The operation + is associative and commutative. The

following properties of the operations hold

$$\alpha(\beta A) = (\alpha \beta) A \tag{1}$$

$$\alpha(A+B) = \alpha A + \alpha B \tag{2}$$

$$1A = A. (3)$$

The inclusion

$$(\alpha + \beta) A \subseteq \alpha A + \beta A \tag{4}$$

holds, but the opposite inclusion need not hold. (Setting $X = \mathbb{R}$, $A = \{-1, 1\}$, and $\alpha = \beta = \frac{1}{2}$ gives a counterexample.) Other properties of algebraic set operations include the following, where $A, B, C \in P(X)$ and $\alpha \in \mathbb{R}$:

$$0 \in A - A \tag{5}$$

$$(0 \in A \text{ and } A + B \subseteq C) \Rightarrow B \subseteq C$$
 (6)

$$\alpha \neq 0 \Rightarrow (A \subseteq B \Leftrightarrow \alpha A \subseteq \alpha B) \tag{7}$$

$$A + B \subseteq C \Rightarrow B \subseteq C - A \tag{8}$$

$$A = B \Rightarrow A + C = B + C. \tag{9}$$

The converse to (8) does not hold, as shown by the example A = B = X and $C = \{0\}$. For $X = \mathbb{R}$, A = [0, 1], $B = \{1\}$, and C = [1, 2] we have A + B = C and $B \neq C - A$. Thus, in general, A + B = C does not imply B = C - A.

Some formulae, that do not hold in the general case, do hold for convex sets. A set $A \in P(X)$ is *convex* if for every α , $\beta \in \mathbb{R}$ such that $\alpha \geq 0$, $\beta \geq 0$, and $\alpha + \beta = 1$,

$$\alpha A + \beta A \subset A$$
.

The converse implication to (9) need not hold in general (e.g., $A \neq X$ and C = X). However, if X is a normed vector space, B is closed and convex, and C is bounded, then (see, e.g., [2, Lemma 1])

$$A + C \subset B + C \Rightarrow A \subset B$$
.

Let A be a convex set, $\alpha > 0$ and $\beta > 0$; then

$$\frac{\alpha}{\alpha+\beta}A + \frac{\beta}{\alpha+\beta}A \subseteq A.$$

From (7) and (2) we get $\alpha A + \beta A \subseteq (\alpha + \beta)A$, and by (4),

$$\alpha A + \beta A = (\alpha + \beta) A.$$

In particular, if A is convex then

$$A + A = 2A$$
.

A subset C of X is a subspace if for all $\alpha, \beta \in \mathbb{R}$

$$\alpha C + \beta C \subseteq C$$
.

Now, for fixed $x \in X$, the subset $\{x\} + C$ is called an *affine subspace* (flat) parallel to C. A flat is a convex set. If C is a subspace of X and C is a flat parallel to C, the

following algebraic properties are easily proved:

$$C + C = C \tag{10}$$

$$L - L = C \tag{11}$$

$$\alpha \neq 0 \Rightarrow \alpha C = C \tag{12}$$

$$C - C = 0 \tag{13}$$

$$A \subseteq C \Rightarrow A + C = C \tag{14}$$

$$A \subseteq C \Rightarrow A + L = L. \tag{15}$$

For more on algebraic operations with convex sets, see [3].

Indefinite integrals Let $I \subseteq \mathbb{R}$ be an interval, C(I) the vector space of all continuous real functions on I, $C^1(I)$ the subspace of all continuously differentiable functions, and C the subspace of all constant functions. A differentiable function φ is a *primitive function* of f if $\varphi' = f$ holds. The set of all primitive functions of f is called the *indefinite integral* of f, and denoted by

$$\int f = \{ \varphi \colon \varphi' = f \}.$$

Let $f, g \in C(I)$ and $\alpha \in \mathbb{R}$; then

$$\int f \neq \phi \tag{16}$$

$$C = \int f - \int f \tag{17}$$

$$\int f + g = \int f + \int g \tag{18}$$

$$0 \cdot \int f \subseteq \int 0 \cdot f \tag{19}$$

$$\varphi \in \int f \Leftrightarrow \int f = \{\varphi\} + C \tag{20}$$

$$\alpha \neq 0 \Rightarrow \int \alpha f = \alpha \int f \tag{21}$$

$$A \subseteq C \Rightarrow \int f + A = \int f \tag{22}$$

$$f \in C^1(I) \Rightarrow \int f' = \{f\} + C \tag{23}$$

$$u, v \in C^{1}(I) \Rightarrow \int uv' = \{uv\} - \int u'v. \tag{24}$$

We prove the properties (18) and (24); the others have similar proofs. For (18), let $\varphi \in f$ and $\psi \in g$; then $f + g = (\varphi + C) + (\psi + C)$. By the commutative and associative laws and (10), we have

$$\int f + \int g = \{ \varphi + \psi \} + C.$$

Since $(\varphi + \psi)' = f + g$, (20) shows that

$$\int f + \int g = \int (f + g).$$

To deduce (24), the formula for integration by parts, let $\varphi \in \int uv'$. Then $\varphi' = (uv)' - u'v$. Since $\int (uv)' - u'v = \{uv\} - \int u'v$ we have $\varphi \in \{uv\} - \int u'v$, so $\int uv' \subseteq \{uv\} - \int u'v$. Conversely, if $\varphi \in \{uv\} - \int u'v$ there exists a function $\psi \in \int u'v$ such that $\varphi = uv - \psi$. Since $\varphi' = (uv)' - u'v = uv'$, we have $\varphi \in \int uv'$, so $\{uv\} - \int u'v \subseteq \int uv'$.

Note that, by (20), f is a flat, so (11) implies (17).

Example 1. Let $I=(0,\pi)$ and for $x\in I$, $f(x)=\cos x/\sin x$. Let J=ff. Using integration by parts, where $u(x)=1/\sin x$ and $v(x)=\sin x$, we get J=1+J. Failure to notice that an indefinite integral is a set leads to the fallacious conclusion that 0=1. However, from (24) we have $J=\{uv\}+J$ where $uv\in C$. Therefore, by (22), J=J.

A mistake can also be made in calculating integrals when incorrect set formulae are used. For example, from the "equality"

$$J = u(x)v(x) - J$$

one might conclude that 2J = u(x)v(x), which is also incorrect.

Example 2. Let $I = \mathbb{R}$, $f(x) = e^x \sin x$, and $g(x) = e^x (\cos x - \sin x)$. Using (24) we get

$$\int f = \{g\} - \int f.$$

Clearly, $\{g\} \neq 2 \iint$. However, $\iint = \{g\} - \iint$ implies, by (9), that

$$\int f + \int f = \{g\} + \left(\int f - \int f\right).$$

Therefore

$$2\int f = \{g\} + C,$$

and, by (7) and (12),

$$\int f = \left\{ \frac{g}{2} \right\} + C.$$

The antiderivative multifunction Let X and Y be Banach spaces. A multivalued function (or simply a multifunction) $F: X \to P(Y)$ is called *convex* if its graph

$$\operatorname{gr} F = \{(x, y) \in X \times Y \colon y \in F(x)\}\$$

is a convex set. This is equivalent to the condition that

$$\alpha F(x_1) + \beta F(x_2) \subseteq F(\alpha x_1 + \beta x_2)$$

for all $x_1, x_2 \in X$, and all $\alpha \ge 0$, $\beta \ge 0$ with $\alpha + \beta = 1$.

We say that F is *closed* on X if $\operatorname{gr} F$ is a closed set in the product topology on $X \times Y$. This is equivalent to the condition that $x_k \to x$, $y_k \to y$, $x_k \in X$, and $y_k \in F(x_k)$ imply $y \in F(x)$.

Le Van Hot [1, Theorem 2] has proved that if X and Y are Banach spaces and $F: X \to P(Y)$ is a convex closed multifunction such that dom(F) = X and $F(x_0)$ is bounded for some $x_0 \in X$, then there exists a unique linear single-valued function $T: X \to Y$ such that

$$F(x) = F(0) + T(x). (25)$$

Without the assumption that $F(x_0)$ is bounded for some $x_0 \in X$, the conclusion of Le Van Hot's Theorem is not true. Consider, for example, the multifunction $F: X \to P(Y)$, given by F(f) = ff, where X = Y = C([0, 1]). Note that C([0, 1]) is a Banach space with

$$||f|| = \max\{|f(x)|: x \in [0,1]\}.$$

By (18) and (21), F is a convex function. Also, F is closed by the uniform convergence and differentiation theorem [4, Theorem 7.17]. By (16), we have

$$dom(F) = \{ f \in X : F(f) \neq \phi \} = C([0,1]).$$

However, F(f) is unbounded for each $f \in C([0,1])$. In this case the formula (25) becomes

$$\int f = \int 0 + \{T(f)\} \tag{26}$$

or, equivalently,

$$\int f = \{T(f)\} + C.$$

If we let $T: C([0,1]) \to C([0,1])$ be the linear function given by

$$T(f)(x) = \varphi(x) - \varphi(c)$$

where $\varphi \in f$ and c is any number in [0,1], then (26) holds. However, T is not unique.

REFERENCES

- Le Van Hot, On the open mapping principle and convex multivalued mappings, Acta. Univ. Carol.-Math. Phys. 26 (1985), 53-59.
- H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165–169.
- 3. R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
- 4. W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, New York, NY, 1976.