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The fact that an indefinite integral is a set of functions is often ignored, perhaps
because of the apparent simplicity of the situation. However, if we regard

iif or fcosxdx

X sin x

as functions, we can easily develop fallacious proofs of such “identities” as 0 = 1.

In this note we introduce a semigroup operation on the set of all nonempty subsets
of a vector space. Then we indicate how the indefinite integral can be viewed as a
set-valued function (or multifunction) and how this point of view avoids the fallacies
mentioned above. Finally, we show how the multifunction given by the indefinite
integral induces a linear function on the space of continuous functions.

Algebraic set operations Let X be a vector space over the real numbers, and let
P(X) denote the family of all nonempty subsets of X. We define addition and scalar
multiplication on the family P(X) by

A+B={a+b:acA, beB}
and
aA={aa: a €A},

where A, B€ P(X) and a € R. In particular, A — B =A + (—1)B. These are called
algebraic set operations. Notice that (P(X), +) is not a group if X # {0}. Indeed, {0}
is the neutral element in (P(X), +), and for every A € P(X)

A+X=X,
so X has no inverse element. The operation + is associative and commutative. The
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following properties of the operations hold

a(BA)=(aB)A (1
a(A+B)=aA+aB (2)
1A=A. (3)
The inclusion
(a+B)ACaA+BA (4)

holds, but the opposite inclusion need not hold. (Setting X =R, A={-1,1}, and
a=p=3 gives a counterexample.) Other properties of algebraic set operations
include the following, where A, B,C € P(X) and a € R:

0EA-A (5)

(0eAand A+BcC)=BcC (6)
a#0= (ACB s aAcCaB) (7)
A+BcC=BcC-A (8)
A=B=A+C=B+C. (9)

The converse to (8) does not hold, as shown by the example A =B =X and
C={0}. For X=R, A=[0,1], B={1}, and C=[1,2] we have A+ B=C and
B # C — A. Thus, in general, A + B = C does not imply B=C — A.

Some formulae, that do not hold in the general case, do hold for convex sets. A set
A € P(X) is convex if for every o, BE€ R such that « >0, B>0, and a+ B =1,

aA+ BACA.

The converse implication to (9) need not hold in general (e.g., A# X and C =X).
However, if X is a normed vector space, B is closed and convex, and C is bounded,
then (see, e.g., [2, Lemma 1])

A+CCB+C=ACB.

Let A be a convex set, @ >0 and B> 0; then

o B
gy Ry

ACA.

From (7) and (2) we get A + BA C(a+ B)A, and by (4),
aA+BA=(a+B)A.
In particular, if A is convex then

A+A=2A.
A subset C of X is a subspace if for all a, B€R

aC+ BCcC.

Now, for fixed x € X, the subset {x} + C is called an affine subspace (flat) parallel to
C. A flat is a convex set. If C is a subspace of X and L is a flat parallel to C, the
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following algebraic properties are easily proved:
cC+C=C
L-L=C
a*0=>aC=C
cC-C=0
AcC=A+C=C
AcC=A+L=L.

For more on algebraic operations with convex sets, see [3].

(10)
(11)
(12)
(13)
(14)
(15)

Indefinite integrals Let ICR be an interval, C(I) the vector space of all
continuous real functions on I, C'(I) the subspace of all continuously differentiable
functions, and C the subspace of all constant functions. A differentiable function ¢ is
a primitive function of f if ¢’ =f holds. The set of all primitive functions of f is

called the indefinite integral of f, and denoted by

[f={e:¢=1).
Let f, g€ C(I) and @ € R; then
Jf*¢
c=[f-f
[f+e=[f+]¢g
0-ffcfof
o€ [f= [f=le}+C
a#O:[WEaff
AcC= [f+a=f

fec1(1)=>[f'={f}+c

u,veCl(I)=>fuv’={uv}—fu’v.

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)
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We prove the properties (18) and (24); the others have similar proofs. For (18), let
¢ € [f and Y€ [g; then [f+ [g=({¢}+C)+ {y}+ C). By the commutative and
associative laws and (10), we have

[+ [g={e+yv}+C.

Since (¢ + ¢)' =f+ g, (20) shows that

[+ [g=[(f+e).

To deduce (24), the formula for integration by parts, let ¢ € fuv’. Then ¢' =
(uv)' —u'v. Since [(uv) —u'v={uv} - [u'v we have ¢ € {uv}— [u'v, so [uv'C
{uv} — Ju'v. Conversely, if ¢ € {uv} — [u'v there exists a function ¢ € [u'v such that
e=uv— . Since ¢’ = (uv) —u'v=ul/, we have ¢ € [uv', so {uv} — [u'v C Juv'.

Note that, by (20), [f is a flat, so (11) implies (17).

Example 1. Let I=(0,7) and for x €I, f(x)=cosx/sinx. Let | = [f. Using
integration by parts, where u(x)=1/sinx and v(x)=sinx, we get J=1+].
Failure to notice that an indefinite integral is a set leads to the fallacious conclusion
that 0 = 1. However, from (24) we have | ={uv}+ ] where uv € C. Therefore, by
(22), J=].

A mistake can also be made in calculating integrals when incorrect set formulae are
used. For example, from the “equality”

J=u(x)o(x) =]

one might conclude that 2] = u(x)uv(x), which is also incorrect.

Example 2. Let I=R, f(x)=e¢"sin x, and g(x) =e*(cos x — sin x). Using (24) we
get

[f=ta) - [f.
Clearly, {g} # 2 [f. However, [f={g}— [f implies, by (9), that
[r+ [r=ta +(fs- [r).
Therefore

2ff={g}+C,
and, by (7) and (12),

ff={%}+c.

The antiderivative multifunction Let X and Y be Banach spaces. A multivalued
function (or simply a multifunction) F: X — P(Y) is called convex if its graph

grF={(x,y) €EXXY: yeF(x)}



354 MATHEMATICS MAGAZINE

is a convex set. This is equivalent to t. > condition that
aF(x,) + BF(x,) CF(ax, + Bxy)

forall x;,x,€X,and all «>0, B=0 with o+ B=1.

We say that F is closed on X if grF is a closed set in the product topology on
X X Y. This is equivalent to the condition that x; = x, y, =y, x, € X, and y; € F(x)
imply y € F(x).

Le Van Hot [1, Theorem 2] has proved that if X and Y are Banach spaces and F:
X—P(Y) is a convex closed multifunction such that dom(F)=X and F(x,) is
bounded for some x, € X, then there exists a unique linear single-valued function T
X =Y such that

F(x)=F(0) +T(x). (25)

Without the assumption that F(x,) is bounded for some x, € X, the conclusion of
Le Van Hot’s Theorem is not true. Consider, for example, the multifunction F:
X—-P(Y), given by F(f)= [f, where X=Y=C([0,1]). Note that C([0,1]) is a
Banach space with

Ifll = max{| f(x)|: x €[0,1]}.

By (18) and (21), F is a convex function. Also, F is closed by the uniform convergence
and differentiation theorem [4, Theorem 7.17]. By (16), we have

dom(F) = {f€X: F(f) + ¢} = ¢([0,1]).

However, F(f) is unbounded for each fe& C([0,1]). In this case the formula (25)
becomes

[f=[o+{1(f)} (26)

or, equivalently,

[r={r(H)+c.
If we let T: C([0,1]) — C([0, 1]) be the linear function given by
T(f)(x) =e(x) — ¢(c)

where ¢ € [f and ¢ is any number in [0,1], then (26) holds. However, T is not
unique.
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