What Goes Up Must Come Down;
Will Air Resistance Make It Return Sooner, or Later?
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A ball thrown straight up with speed v, would, in the absence of air, return in time 2v,/g. Air
resistance, or drag, will influence the return time in two ways: the maximum height reached is less
than the zero-drag height v?/2g, and the speed at any height z is less than the zero-drag speed.
(These statements follow from the energy equation mwv?=3muv(z)*+ mgz + W, where m is the
mass of the ball, and W is the (positive) work done against air resistance. The speed is zero at the
top of the trajectory, o z,,,, <v?/2g; and at any z, v(z) < |v?—2gz. Note that the energy
conservation equation is not an additional physical principle: it follows from the equation of
motion on multiplying by v and integrating.) Thus with air resistance, the ball has a shorter
distance to travel, but at a slower speed. Which effect wins?

Let f(v) be the deceleration due to the drag force. The equation of motion then reads
dv/dt= —g— f(v) on the way up, and dv/dt = g — f(v) on the way down (it is convenient to deal
with speeds rather than velocities in this context). We will assume that f(v) has the property that
there is just one speed at which the gravitational and drag forces are in balance. This defines the
terminal speed v,: f(v,) = g. The terminal speed is a natural scaling parameter for this problem.
Let u=v/v, and ¢(u) =f(v)/f(v,) =f(v)/g. Then by integrating dr (obtained from the equation
of motion) we find the time to go up to maximum height is
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and the time to come down is
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The speed on impact, vy, is determined by the condition that the distance travelled on the way up
is the same as that travelled on the way down. These are given by integrating v dt; we find Uy i is
determined by
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We are interested in the ratio 7 of the return time to the zero-drag return time 2v,/g. From (1)
and (2),
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Physically, f(v) must go to zero as v goes to zero. Thus @, the maximum value of ¢(u), can be
made arbitrarily small compared to unity when the initial speed v, is chosen sufficiently small
compared to the terminal speed v, (u; sufficiently small). We can therefore expand [1 =¢(«)] ™' in
(3) and (4), to find
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Thus any physically reasonable form of drag will make the ball return sooner, provided the launch
speed is small compared to the terminal speed.

Wind tunnel experiments [1] on spheres show that the drag force is (approximately) propor-
tional to v® in the Reynolds number range 10°<R<10° This covers the range of practical
interest, provided the launch speeds are kept moderate (a sphere of diameter 1.5 cm and speed
10° cm/s has R=10* in air). For f= kv? (¢ = u?) we find from (3) and (4) that
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and
7= (arctanu, + arctanh u;) /2u,. (7)

The numerator N(u) = arctan u + arctanh (u/Vl + uz) has slope dN/du=(1+u?)"'+
(14 u?)~'/2, which is less than 2 for nonzero u. Thus N(u,) increases more slowly than 2u;, the
leading term in its Taylor expansion about u, = 0. It follows that, for a v? drag, 7 is always less
than unity, no matter what the initial speed.

Could this result be true for an arbitrary (nonnegative) drag f(v)? Let’s try a few more
examples. When f is linear in v (Stokes’ law), we find the attractive result

(®)

Since v, is always less than v;, we again have the return time being shortened by air resistance,
irrespective of the initial speed.

So far, all has indicated a shorter return time. Now consider some fractional powers. First
suppose f(v) ~v'/2. Setting u=w?, we find that u, is determined by an interesting transcendental
equation
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and that the ratio of return time to zero-drag return time is
T=w,” *{w,—log(1 +w,) —w,—log(1 —w,)}. (10)

For u;» 1 we find 7 — tu,'/2, larger than unity.

Next, suppose f(v) ~v2/3. Setting u = y> we find
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and
72—23 5 {y;— arctan y, + arctanhyf—y/}. (12)
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For u; > 1, 7> 3u,'/?, again larger than unity.
The above results suggest to me that there is a cross-over at the linear force law:

CONJECTURE . For powers p in f(v) = kv?, p=1 gives a return time which is always shorter than
the zero-drag return time 2v;/g. For p <1, the return time is shorter for small initial speeds,
but eventually becomes longer than 2v; /g as v, increases. The closer p is to 1, the higher the ratio of
the initial speed to the terminal speed before this happens.
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We have determined 7(u;) for only four values of p: 2, 1, 1/2, 2 /3. Students may enjoy some of
the following projects in analysis and numerical methods:

(a) plotting 7 versus u; for these four values of p;

(b) finding other values of p for which the integral equation (3) for u, is reducible to a
transcendental equation, and plotting 7(u;) for these;

(c) a class exercise in which different values of p <1 are assigned to students or student groups,
and each is asked to find the u; for which 7= 1.

This problem originated from a first-year physics question set by Tim Shirtcliffe. I am grateful to him and to
John Harper and Graeme Wake for helpful comments.
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A Method of Duplicating the Cube

EpwaRrp V. GRAEF
1814 Kent Road
Pittsburgh, PA 15241

V. C. Harris
San Diego State University
San Diego, CA 92182

The old problem of duplicating the cube—that is, of constructing a cube with volume twice
that of a given cube—was solved geometrically in several ways by the ancient Greek mathemati-
cians (see Eves [1] for a summary). It is the purpose of this note to show how analytic geometry
can be used to construct two curves which will give one more solution to the problem.
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