Theorem 3．Assume the hypotheses of the previous theorem，and let \mathbf{G} be the collection of all G such that G is an algebraic complement in E of each member of \boldsymbol{F} ．If k ，the common dimension of the members of \boldsymbol{F} ，is strictly between 0 and the dimension n of E ，then G is uncountable．

Proof．Since the dimensions k and $m=n-k$ of members of \boldsymbol{F} and \boldsymbol{G} ，respec－ tively，are strictly less than $n=\operatorname{dim}(E)$ ，the members of $\boldsymbol{F} \cup \boldsymbol{G}$ are proper linear subspaces of E ．If \boldsymbol{G} is countable，then $\boldsymbol{F} \cup \boldsymbol{G}$ is countable，so there is a v in $E \backslash \cup(\boldsymbol{F} \cup \boldsymbol{G})$ ．As $\boldsymbol{F}_{0}=\{F+\operatorname{span}(\{v\}): F \in \boldsymbol{F}\}$ satisfies the hypotheses of Theorem 2， there is a linear subspace H of E that is an algebraic complement to each member of \boldsymbol{F}_{0} ．Now $H+\operatorname{span}(\{v\})$ is an algebraic complement to each member of \boldsymbol{F} ，so $\operatorname{span}(\{v\})+H \in \boldsymbol{G}$ ．Now $v \in \cup \boldsymbol{G}$ which is a contradiction of the choice of v ，and so G is uncountable．

REFERENCES

1．I．N．Herstein，Topics in Algebra，Blaisdell， 1964.
2．J．L．Kelley，I．Namioka，et al．，Linear Topological Spaces，Van Nostrand， 1963.
3．N．J．Lord，Simultaneous complements in finite－dimensional vector spaces，Amer．Math．Monthly 92 （1985），492－493．
4．A．R．Todd and S．A．Saxon，A property of locally convex Baire spaces，Math．Ann． 206 （1973），23－34．
5．A．R．Todd，Coverings of products of linear topological spaces，J．Austral．Math．Soc．（Series A） 29 （1980），281－290．

Proof without Words：

The Law of Cosines

$(2 a \cos \theta-b) b=(a-c)(c+a)$ $c^{2}=a^{2}+b^{2}-2 a b \cos \theta$

