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Conic Sections from the Plane Point of View
Sidney H. Kung (sidneykung@yahoo.com), Cupertino, CA 95014

We give an analytic proof of the fact that the conic sections are obtained by cutting
a cone at various angles. Our proof does not involve spheres or circles (see [1, 3, 4]),
but primarily depends upon the cutting plane itself.

Figure 1 shows a two-napped circular cone C which may be viewed as the result
of rotating the line g (generator) about the fixed line l (z-axis) while maintaining the
same angle (β) between g and l. We choose the intersection o of g and l as the origin.
Let P(x, y, z) be a point on the surface of C. From Figure 1 (see also [2, p. 751]), we
see that a

r = c
z . It follows that the equation of C is

x2 + y2 = z2 tan2 β. (1)

Suppose a cutting plane E that does not contain o makes an angle α with the z-axis.
The angle between E and the xy-plane is π

2 − α. Let the equation of plane E be

z = tan
(π

2
− α

)
y + h (h �= 0). (2)

Substituting (2) into (1) gives the equation of the intersection of C and E :

x2 + y2 − tan2 β
[
tan

(π

2
− α

)
y + h

]2 = 0,
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Figure 1.

or

x2 +
[
1 − tan2 β tan2

(π

2
− α

)]
y2 − 2h tan2 β tan

(π

2
− α

)
y = h2 tan2 β. (3)

Thus,

(i) If β < α ≤ π

2 , then 0 < π

2 − α < π

2 − β. So 1 − tan2 β tan2(π

2 − α) > 0. The
coefficients of x2 and y2 are positive. Hence the conic is an ellipse. (If α = π

2 ,
this is a circle.)

(ii) If α = β, then the coefficient of y2 is zero. Equation (3) reduces to x2 −
(2h tan β)y = h2 tan2 β, and we have a parabola.

(iii) If 0 ≤ α < β, then 0 < π

2 − β < π

2 − α. Thus, 1 − tan2 β tan(π

2 − α) < 0.

The coefficients of x2 and y2 have opposite signs. The conic is a hyperbola.

It should be noted that if plane E contains o, the intersection of E and the cone is a
point, a line, or a pair of intersecting lines corresponding to α = π

2 or α > β, α = β,

and 0 ≤ α < β, respectively (see [2, p. 637]). These are called degenerate conics.
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