

Figure 5.

Figure 6.



Figure 7.

Conic Sections from the Plane Point of View

Sidney H. Kung (sidneykung@yahoo.com), Cupertino, CA 95014

We give an analytic proof of the fact that the conic sections are obtained by cutting a cone at various angles. Our proof does not involve spheres or circles (see [1, 3, 4]), but primarily depends upon the cutting plane itself.

Figure 1 shows a two-napped circular cone C which may be viewed as the result of rotating the line g (generator) about the fixed line l (z-axis) while maintaining the same angle (β) between g and l. We choose the intersection o of g and l as the origin. Let P(x, y, z) be a point on the surface of C. From Figure 1 (see also [2, p. 751]), we see that $\frac{a}{c} = \frac{c}{c}$. It follows that the equation of C is

$$x^2 + y^2 = z^2 \tan^2 \beta. {1}$$

Suppose a cutting plane E that does not contain o makes an angle α with the z-axis. The angle between E and the xy-plane is $\frac{\pi}{2} - \alpha$. Let the equation of plane E be

$$z = \tan\left(\frac{\pi}{2} - \alpha\right)y + h \qquad (h \neq 0). \tag{2}$$

Substituting (2) into (1) gives the equation of the intersection of C and E:

$$x^{2} + y^{2} - \tan^{2}\beta \left[\tan\left(\frac{\pi}{2} - \alpha\right)y + h\right]^{2} = 0,$$

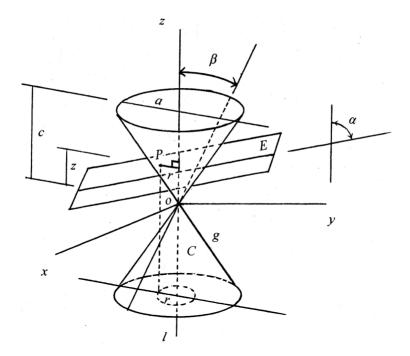


Figure 1.

or

$$x^{2} + \left[1 - \tan^{2}\beta \tan^{2}\left(\frac{\pi}{2} - \alpha\right)\right]y^{2} - 2h\tan^{2}\beta \tan\left(\frac{\pi}{2} - \alpha\right)y = h^{2}\tan^{2}\beta.$$
 (3)

Thus.

- (i) If $\beta < \alpha \le \frac{\pi}{2}$, then $0 < \frac{\pi}{2} \alpha < \frac{\pi}{2} \beta$. So $1 \tan^2 \beta \tan^2(\frac{\pi}{2} \alpha) > 0$. The coefficients of x^2 and y^2 are positive. Hence the conic is an ellipse. (If $\alpha = \frac{\pi}{2}$, this is a circle.)
- (ii) If $\alpha = \beta$, then the coefficient of y^2 is zero. Equation (3) reduces to $x^2 (2h \tan \beta)y = h^2 \tan^2 \beta$, and we have a parabola.
- (iii) If $0 \le \alpha < \beta$, then $0 < \frac{\pi}{2} \beta < \frac{\pi}{2} \alpha$. Thus, $1 \tan^2 \beta \tan(\frac{\pi}{2} \alpha) < 0$. The coefficients of x^2 and y^2 have opposite signs. The conic is a hyperbola.

It should be noted that if plane E contains o, the intersection of E and the cone is a point, a line, or a pair of intersecting lines corresponding to $\alpha = \frac{\pi}{2}$ or $\alpha > \beta$, $\alpha = \beta$, and $0 \le \alpha < \beta$, respectively (see [2, p. 637]). These are called degenerate conics.

References

- 1. D. Atkinson, Spheres in a cone; or proving the conic sections, Mathematics Teacher, 80 (1987) 182-184.
- R. E. Larson, R. P. Hostetler, and B. H. Edwards, Calculus with Analytic Geometry, 6th ed., Houghton Mifflin, 1998.
- 3. G. B. Thomas, Jr., and R. L. Finney, Elements of Calculus and Analytic Geometry, Addison-Wesley, 1981.
- A. R. Partridge, Ellipses from a circular and spherical point of view, Two-Year College Math. J. 14 (1983) 436–438.