

Figure 5.

Figure 6.

Figure 7.

Conic Sections from the Plane Point of View

Sidney H. Kung (sidneykung@yahoo.com), Cupertino, CA 95014
We give an analytic proof of the fact that the conic sections are obtained by cutting a cone at various angles. Our proof does not involve spheres or circles (see [1, 3, 4]), but primarily depends upon the cutting plane itself.

Figure 1 shows a two-napped circular cone C which may be viewed as the result of rotating the line g (generator) about the fixed line l (z-axis) while maintaining the same angle (β) between g and l. We choose the intersection o of g and l as the origin. Let $P(x, y, z)$ be a point on the surface of C. From Figure 1 (see also [2, p. 751]), we see that $\frac{a}{r}=\frac{c}{z}$. It follows that the equation of C is

$$
\begin{equation*}
x^{2}+y^{2}=z^{2} \tan ^{2} \beta \tag{1}
\end{equation*}
$$

Suppose a cutting plane E that does not contain o makes an angle α with the z-axis. The angle between E and the $x y$-plane is $\frac{\pi}{2}-\alpha$. Let the equation of plane E be

$$
\begin{equation*}
z=\tan \left(\frac{\pi}{2}-\alpha\right) y+h \quad(h \neq 0) \tag{2}
\end{equation*}
$$

Substituting (2) into (1) gives the equation of the intersection of C and E :

$$
x^{2}+y^{2}-\tan ^{2} \beta\left[\tan \left(\frac{\pi}{2}-\alpha\right) y+h\right]^{2}=0
$$

Figure 1.
or

$$
\begin{equation*}
x^{2}+\left[1-\tan ^{2} \beta \tan ^{2}\left(\frac{\pi}{2}-\alpha\right)\right] y^{2}-2 h \tan ^{2} \beta \tan \left(\frac{\pi}{2}-\alpha\right) y=h^{2} \tan ^{2} \beta \tag{3}
\end{equation*}
$$

Thus,
(i) If $\beta<\alpha \leq \frac{\pi}{2}$, then $0<\frac{\pi}{2}-\alpha<\frac{\pi}{2}-\beta$. So $1-\tan ^{2} \beta \tan ^{2}\left(\frac{\pi}{2}-\alpha\right)>0$. The coefficients of x^{2} and y^{2} are positive. Hence the conic is an ellipse. (If $\alpha=\frac{\pi}{2}$, this is a circle.)
(ii) If $\alpha=\beta$, then the coefficient of y^{2} is zero. Equation (3) reduces to $x^{2}-$ $(2 h \tan \beta) y=h^{2} \tan ^{2} \beta$, and we have a parabola.
(iii) If $0 \leq \alpha<\beta$, then $0<\frac{\pi}{2}-\beta<\frac{\pi}{2}-\alpha$. Thus, $1-\tan ^{2} \beta \tan \left(\frac{\pi}{2}-\alpha\right)<0$. The coefficients of x^{2} and y^{2} have opposite signs. The conic is a hyperbola.

It should be noted that if plane E contains o, the intersection of E and the cone is a point, a line, or a pair of intersecting lines corresponding to $\alpha=\frac{\pi}{2}$ or $\alpha>\beta, \alpha=\beta$, and $0 \leq \alpha<\beta$, respectively (see [2, p. 637]). These are called degenerate conics.

References

1. D. Atkinson, Spheres in a cone; or proving the conic sections, Mathematics Teacher, $\mathbf{8 0}$ (1987) 182-184.
2. R. E. Larson, R. P. Hostetler, and B. H. Edwards, Calculus with Analytic Geometry, 6th ed., Houghton Mifflin, 1998.
3. G. B. Thomas, Jr., and R. L. Finney, Elements of Calculus and Analytic Geometry, Addison-Wesley, 1981.
4. A. R. Partridge, Ellipses from a circular and spherical point of view, Two-Year College Math. J. 14 (1983) 436-438.
