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Inequalities of the Form f(g(x)) > f(x)

TAL KUBO (student)
Brookline High School,
Brookline, MA

Consider a problem in trigonometry [1]: To prove that for all x in the interval
[0, 7],

+ +

(sinx)(l+cosx)<[sin[x 477 ][l+cos[x47 ] (1)
It is possible to solve this problem by manipulating both sides using trigonometric
identities, but this method leads to complicated expressions which yield little insight
into the problem. A different approach is to reformulate the problem in functional
terms: It is the same as proving that

F(G(x)) > F(x), (2)

where F(x) = (sin x X1 + cos x) and G(x) = (x + 7) /4.

In this note, a simple method is given for constructing functions G such that (2)
holds for a given function F and all x in a given closed interval [a,b]. The
method will then be illustrated in two applications. The related functional inequality
F(G(x)) > G(F(x)) is considered in [2].

Let F and G denote continuous functions on a finite closed interval [a, b]. If the
following general conditions are satisfied, then (2) holds for all x in [a, b]:

Cl: Interval [a, b] is partitioned into N closed subintervals {I,, 1 <n < N} such that
for each n, F is monotonic on I,,.

C2: For each n,G maps I, into I,.

C3: In each subinterval where F increases, G(x) > x. In each subinterval where F
decreases, G(x) < x.

Graphically, C2 and C3 imply that for each n <N, the graph of G lies within the
square I, X I, above or below the line y = x according to whether F is increasing or
decreasing in I,,. This is illustrated in Ficure 1.

The trigonometric inequality above can be proven using these ideas. As above, let
F(x)=(sinx)(1 + cos x) and G(x)=(x+m)/4. F is increasing in [0,7/3] and
decreasing in [7/3, w]. Each linear function G(x) = Ax + B satisfies conditions C2
and C3 provided that G(7/3) =7 /3 and 0 < A < 1; the G given in the statement of
the problem is a member of a continuous family of linear functions for which the
inequality holds.

M

y=x
g(x)
FIGURE 1
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The conditions stated above can be used to prove an interesting theorem. Define
P(x) = G(x) — x. Then C3 implies that sgn P(x) = sgn F'(x) for all x in (a, b). This
suggests that there should exist a ‘small” positive real constant k such that G(x) =
x + kF'(x) would satisfy conditions C2 and C3. However, if F'(a) <0, then this
would imply that G(a) = a + kF'(a) < a, contradicting condition C2 requiring that G
map [a,b] into itself. The same problem would arise if F'(b) were positive. By
introducing the non-negative multiplier (x — a)(b — x), this problem is avoided.

TueoreM. Let F be a twice-differentiable function with a finite number of local
extrema in [a, b]. Then there exists a positive real constant k such that for all x in

[a, b],
F(x) <F[x+k(x—a)(b—2x)].
Proof. The finite set of local extrema of F furnishes a subdivision of [a, b] into
intervals on which F is monotonic. Consider one such interval I =[c, d] on which F

increases. To satisfy C2 and C3, it is sufficient to determine a positive real constant k
such that the following inequality is satisfied in I:

c<x<x+k(x—a)(b—x)F'(x) <d.
The two leftmost inequalities are obvious. The last inequality holds iff
k(x—a)(b—x)F'(x) <d—x.
Case 1: d =b. The inequality will hold when
k(x—a)F'(x) <1.

The existence of F”" implies continuity and boundedness of F’; let M be the
maximum absolute value of F' in [a, b].

1

k(x—a)F'(x) <k(b—a)M; choose k = Mb=a)

Case 2: d <b. Then F'(d) =0 and
k(x —a)Xb—x)F(x)—F(d)]<d—=x
& k(x —aXb —xI(F'(x) — F'(d)/(d -] < 1.

Since the difference quotient approaches —F'(d) as x approaches d, there exists a
number ¢ in (¢, d) such that the quotient is bounded above in (¢, d). Therefore, the
absolute value of the difference quotient in [c, d] is bounded above by some positive
number M. Also, (x —a)(x —b) < (b — a)?. Take

1

M(b —a)*
and the inequality is satisfied. A similar argument applies if F decreases on I. Thus
the above shows how to chose k in any specific subinterval I. Taking the minimum

value of k over all the subintervals of the partition, one obtains a value of k valid for
the entire interval [a, b]. Q.E.D.

The same argument can be used to establish the existence of a positive real
constant A such that for all x in [a, b],
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F(x)>F[x—h(x—a)(b—x)F'(x)].

If F'(a) >0, then the multiplier (x —a) in the statement of the theorem is
superfluous, and if F'(b) <0, then (b —=x) is superfluious. For example, taking
F(x)=sinx and [a, b] =[0, 7], we find that G can be of the form G(x) = x + kF'(x).
Applying to this pair of functions the argument used to prove the theorem, we find
that for 0 <x <,

0<k<1l=sin(x+k(cosx))>sinx.
Setting x = 7 /2 — y, we obtain the equivalent inequality
cos(y —k(siny)) =cosy, —m/2<y<m/2.

Other inequalities of similar form may be written down by varying the function or the
interval.
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Poetry Analysis

Ricuarp McDerMOT
Allegheny College

DenNis McDerMoOT
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While watching the classic film, Singing in the Rain, recently, we were intrigued by
the curious behavior of the protagonist in the song whose lyrics are

Moses supposes his toeses are roses,
But Moses supposes erroneously.
Moses he knowses his toeses aren’t roses
As Moses supposes his toeses to be.

Upon analysis, we concluded that there are only two' reasonable explanations for the
thought patterns attributed to Moses in this poem.

a) Moses is suffering from an obsessive-compulsive disorder, which compels him to
irrational beliefs even though he is aware of their irrationality, or?

b) Moses is a mathematician who is attempting to prove by contradiction that his
toeses are not roses.

'After briefly considering a multiple personality as an additional possibility, we decided that, if this were
the case, the third line would be

Abraham knowses his toeses aren’t roses.

2As usual, this is the inclusive ‘or.”
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