A New Proof of the Double Butterfly Theorem

LARRY HOEHN

Austin Peay State University
Clarksville, TN 37044

The butterfly problem, which dates back to at least 1815, seems to hold a continual interest. It has had a variety of proofs and extensions in recent years. A synopsis of this celebrated problem is given in [4] and a very comprehensive update is given in [1]. In this note, we provide a new proof of one of its extensions-namely, the double butterfly theorem.

This theorem, as given by D. Jones in [3], is
Double Butterfly Theorem. Let PQ be a fixed chord of a circle and let "butterfly R" and "butterfly S" be inscribed in the circle and oriented such that their wings cut $P Q$ (in order from left to right) at $R_{4}, R_{3}, R_{2}, R_{1}$ and $S_{1}, S_{2}, S_{3}, S_{4}$ respectively. If $P R_{1}=Q S_{1}, P R_{2}=Q S_{2}$, and $P R_{3}=Q S_{3}$, then $P R_{4}=Q S_{4}$ (see Figure 1).

For our proof we use a lemma attributed to Hiroshi Haruki [2].

Lemma. Suppose $P Q$ and $C D$ are non-intersecting chords in a circle and that B is a variable point on the arc $P Q$ remote from C and D. Then for each position of B, the lines $B C$ and $B D$ cut $P Q$ into segments of lengths x, y, z where $x z / y$ is a constant (see Figure 2).

FIGURE 2

This lemma, which deserves a much wider recognition, is proved in [2] by elementary geometry and in [1] by cross ratios. For our proof of the theorem we let $m=P R_{4}, \quad n=Q S_{4}, \quad a=P R_{3}=Q S_{3}, \quad b=R_{3} R_{2}=S_{3} S_{2}, c=R_{2} R_{1}=S_{2} S_{1}, d=R_{1} S_{1}$, and $e=a+b+c+d$ as seen in Figure 1. By applying Haruki's lemma twice to points A and B and fixed chords $P Q$ and $C D$ of butterfly R, we have

$$
\frac{m(b+c+e)}{a-m}=\frac{(a+b) e}{c}
$$

since both are equal to the same constant. Similarly

$$
\frac{n(b+c+e)}{a-n}=\frac{(a+b) e}{c}
$$

for butterfly S. By solving these two equations simultaneously, we obtain $m=n$ which completes the proof.

REFERENCES

1. Leon Bankoff, The metamorphosis of the butterfly problem, this Magazine 60 (1987), 195-210.
2. Ross Honsberger, The butterfly problem and other delicacies from the noble art of Euclidean geometry, Part 1: TYCMJ 14 (1983) 2-8; Part 2: TYCMJ 14 (1983), 154-158.
3. Dixon Jones, A double butterfly theorem, this Magazine 49 (1976), 86-87.
4. Leo Sauvé, The celebrated butterfly problem, EUREKA (now CRUX MATHEMATICORUM) (1976), 2-5.
