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A New Proof of the Double
Butterfly Theorem
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Austin Peay State University
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The butterfly problem, which dates back to at least 1815, seems to hold a continual
interest. It has had a variety of proofs and extensions in recent years. A synopsis of
this celebrated problem is given in [4] and a very comprehensive update is given in
[1]. In this note, we provide a new proof of one of its extensions—namely, the double
butterfly theorem.

This theorem, as given by D. Jones in [3], is

DousLe BurrerrLy Tueorem. Let PQ be a fixed chord of a circle and let
“butterfly R” and “butterfly S” be inscribed in the circle and oriented such that their
wings cut PQ (in order from left to right) at R,,R;, Ry, R, and S,,5,,83,5,
respectively. If PR, =QS,, PR,=QS,, and PRy;=QS,, then PR,=QS, (see
Ficure 1).

For our proof we use a lemma attributed to Hiroshi Haruki [2].
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Lemma. Suppose PQ and CD are non-intersecting chords in a circle and that B is a
variable point on the arc PQ remote from C and D. Then for each position of B, the
lines BC and BD cut PQ into segments of lengths x, y, z where xz /y is a constant (see
FIGURE 2).
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FIGURE 2

This lemma, which deserves a much wider recognition, is proved in [2] by
elementary geometry and in [1] by cross ratios. For our proof of the theorem we let
m=PR,, n=0S,, a=PR,=QS;, b=R,Ry=S,S,, c=R,R,=85,S,, d=R,S,
and e=a+b+c+d as seen in Ficure 1. By applying Haruki’s lemma twice to
points A and B and fixed chords PQ and CD of butterfly R, we have

m(b+c+e) (a+b)e
a—m N c ’

since both are equal to the same constant. Similarly

n(b+c+e) (a+b)e
a—n N c

for butterfly S. By solving these two equations simultaneously, we obtain m =n
which completes the proof.
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