The optimal angle 6, depends on the velocity ratio r and is independent of the street
width w. For walkers without calculators, Figure 3 plots 6. as a function of r.
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Figure 3. Optimal initial angle versus speed ratio.

For the parameters w = 30 ft., vy = 5 ft./sec., v, = 3 ft./sec., as in our example,
the optimal solution corresponds to 6 = arccos(3/5) = 53°. The distance along AC
between meetings will be 45 ft. and the time between meetings will be 15 sec.

Summary. Fay and Sam go for a walk. Sam walks along the left side of the street while Fay,
who walks faster, starts with Sam but walks to a point on the right side of the street and then
returns to meet Sam to complete one segment of their journey. We determine Fay’s optimal
path minimizing segment length, and thus maximizing the number of times they meet during
the walk. Two solutions are given: one uses derivatives; the other uses only continuity.

Acknowledgment. Our thanks to the reviewers and editors for several very helpful sugges-
tions.
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The Cobb-Douglas Function and Hélder’s Inequality
Thomas E. Goebeler, Jr. (tgoebeler @episcopalacademy.org)

Whenever I teach Business Calculus, I am struck that the Cobb-Douglas production
function is ripe for an application of Holder’s inequality [2]. This capsule explores an
example.
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Cobb-Douglas The Cobb-Douglas function Q expresses the rate of production (of
an economic entity) in terms of inputs of capital K and labor L. It has the form Q =
AK®*L'~*, where A is a scalar, 0 < « < 1, and Q, K, and L are nonnegative [1]. The
constant A is total factor productivity and accounts for effects in the output not caused
by capital and labor, such as technology, efficiency, or, for that matter, good weather.
Economic considerations dictate the form of the function, as is explained succinctly
in [3, pp. 887-888]. The exponents of K and L sum to one in this model, which
means we are assuming ‘“‘constant returns to scale”; that is, for example, if K and L
are each increased 15%, so is output. The exponents also give capital’s and labor’s
respective shares of output. If o = 1/5, capital has a 20% share of output and labor
an 80% share. These are not indicative of their share of a budget; rather they point to
respective contribution to the output, per unit, per unit time. The model assumes « is
constant, which is perfectly plausible for relatively short time intervals.

Holder Imagine that the inputs are adjusted over time, so that K and L depend on
time ¢. To find the total output over a time interval, say [0, 7], we would calculate
fOT Q(t) dt, perhaps with some difficulty. An upper bound on production can be found
easily by applying Holder’s inequality:

b b 1/p b 1/q
/If(x)g(x)ldx§</ IOk dx) (/ gl dx) ,

where p, g are real numbers such that % + ql =1.Setting p = L and g = ﬁ we get

a

T T T « T
f Q@) dt = / AK@®))* (L)' ™dt < A (/ K1) dt) (/ L(t) dt)
0 0 0 0

Example Suppose a firm has weekly production Q = 1125K'/3L*>_ implying total
factor productivity A of 1125, and a capital-labor cost ratio of one to four. Suppose,
in addition, labor unit costs of $180/week, a capital rental rate K of $225/week, and
a budget of $90,000/week. Then maximizing production leads to an allotment of 80
units of capital and 400 units of labor. The firm anticipates an increasing cash flow
sufficient to budget an additional $2070 each week for the next 4 weeks, which means
it can allocate more to each of K and L, but not necessarily in the 1-to-5 proportion
(in terms of units) that initially maximized production. Assuming the labor market can
supply no more than an additional 9 units per week, the best the firm can do is increase
capital by 2 units and labor by 9 units per week. Accordingly, K (#) = 80 4 2¢ and
L(t) = 400 + 9¢, as functions of time. Total production over that time would be

l—a

4 4
f Q(t)dt = / 1125(80 + 21)"/3(400 + 91)*/° dt
0 0

4 1/5 4 4/5
<1125 (f (80 + 21) dt) </ (400 + 91) dt)
0 0

= 1125(336)'/5(1672)*°
~ 1,364,613.

Using this procedure a production manager can provide upper management with a
useful (over) estimate of production for the next 4 weeks with a simple hand-held

388 THE MATHEMATICAL ASSOCIATION OF AMERICA



calculator. Such “back of the envelope” calculations can direct appropriate budgeting
for a desired production output.

Afterword Our estimate turns out to be only a dollar off. Why is the upper bound so
close to the actual answer? Equality holds in Holder’s inequality if

alf1" = Blgl

for some « and S not both 0. In our example, while this condition does not hold, the
two functions are not dramatically far from satisfying it.
We invite the reader to solve the following problem:

Exercise. Short term available capital and labor are anticipated to obey the follow-
ing equations: K (t) = 500¢%> and L(r) = 60t + 1. These formulas represent quick
growth in a company that expects exponential investment in capital and large linear
growth in labor costs each week, modeled continuously. Time is in weeks and produc-
tion units may be thought of as hundreds of dollars. The company believes its produc-
tion function to be Q = 200K '/3L?/3. Use Holder’s inequality to find an upper bound
for the company’s anticipated production for the coming four weeks. This approach
gives an answer with an error of roughly %%.

Summary. Holder’s inequality is here applied to the Cobb-Douglas production function to
provide simple estimates to total production.

Acknowledgment. The author would like to thank the referee and the editors for their
thoughtful suggestions; they improved this capsule decidedly.
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The Center of Mass of a Soft Spring

Juan D. Serna (serna@uamont.edu) University of Arkansas at Monticello, Monticello
AR and Amitabh Joshi, Eastern Illinois University, Charleston, IL

Finding the center of mass is a fundamental part of the mechanics of rigid bodies. The
center of mass of highly symmetric rigid bodies is easily obtained. However, if the
shape and size of a body is affected by external factors, like gravity, its center of mass
changes in a way that it is sometimes difficult to predict. This is the case with a soft
helical spring. When such a spring is hung vertically it stretches non-uniformly, and
its center of mass is no longer located at the center of the spring’s length.

In this article, we find the center of mass of a vertically suspended soft spring (a
Slinky) using the calculus. Here, we use the term “soft” to describe a spring whose
stiffness is small enough so that its own weight stretches it noticeably when it is sus-
pended vertically. Our results are in excellent agreement with experimental results and
non-analytic approaches. The method we use is easily incorporated into any under-
graduate calculus or general physics course.
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