
M N 
1-3-5411-2 

1-12 11-12 

-2 -7 4 
-2 2 -4 

^9 8~~ 
^ L 

Substituting the coefficients in (2) (note that t ? 
{n 

? 
l)/2 = 1) gives 

je5 - 4x4 + 3jc2 - 2 jc - 2 -9jc + 8 14* - 10 
+ t^-r^ + 

(jc2 
- jc + 2)3 x2 - x + 2 (jc2 

- x + 2)2 (x2 
- x + 2)3 

Note also that x2 - x -\-2 = (x 
- 

1/2)2 + 4/7. On the right hand side of the above ex 

pression, replacing the coefficients ?2, 8, and ?10 in the numerators by ?2 + 1/2M, 
8 + 1/2M, and -10 + 1/2M, respectively, we get 

jc5 - 4x4 + 3x - 2 (jc 
- 

1/2) 
- 

3/2 -9(x 
- 

1/2) + 7/4 

((jc 
- 

1/2)2 + 7/4)3 (x - 1/2)2 + 7/4 ((jc - 1/2)2 + 7/4)2 

14(jc 
- 

1/2)2 
- 3 

+ 
((x-l/2)2 + 7/4)3' 

This last expression is an easily antidifferentiable form. 
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An Elegant Mode for Determining the Mode 

D.S. Broca (dsbroca@iimk.ac.in), Indian Institute of Management Kozhikode, Kozhik 
ode 673 571, Kerala, India 

For any probability distribution, the mode, like the mean and median, is a measure 
of central tendency. Geometrically, it represents the relative maximum of the probabil 
ity density function (pdf) and thus is the most striking feature in the curve's topogra 

134 ? THE MATHEMATICAL ASSOCIATION OF AMERICA 

This content downloaded from 152.3.25.151 on Fri, 20 Jun 2014 12:28:30 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


phy. In locating the position of the modal value, the classical first or second derivative 
tests can prove quite tedious since a density function is usually the product of several 
factors involving jc. The purpose of this paper is to demonstrate how, instead of us 

ing the original function /(jc), the alternative g{x) = In /(jc) can be employed, often 

leading to considerable simplifications. 
The mode is important in its own right as a descriptive parameter. For a unimodal 

distribution, this value can, especially in cases where the mean does not exist, be 

taken as a measure of central tendency. The position of the mode also helps measure 

skewness (or, lack of symmetry) of the curve. The Pearson coefficient of skewness, 

skp 
= {mean 

? 
mode)/a 2? 3 (mean 

? 
median)/cr, depends upon the relative position 

of the mean /x, the median /xe, and the mode m0. For a positively skewed distribu 

tion, m0 < /xe < /x, that is, skp > 0, while for a negatively skewed distribution, the 

inequality is reversed. 

The method 

The following method of finding the mode was originally proposed by Rahman [3, 
Ch. 7]. We revisit it here, primarily to illustrate its effectiveness as a teaching tool; in 

addition, it is hoped that the method will become a more standard part of textbooks 
on probability and statistics. We assume without loss of generality that /(jc) > 0. 

Then, by taking natural logarithms, g(x) 
= ln/(jc) <<=>> fix) 

= e8(x). Differentiati 
ion yields /'(jc) = 

eg{x)gf(x), so f\x0) 
= 0 if and only if g'(xo) 

= 0 since the expo 
nential function is always positive. Differentiating again gives /"(jc) 

= 
e8(x)g"{x) + 

e8(x)[gf(x)]2. Evaluating the second derivative at the critical point jc0, we get f/f(x0) 
= 

es<x?)g"(x0). Therefore, f"(x0) < 0 if and only if g"(x0) < 0. Thus, 

/'(*o) = 0 1 ^ ?g'(x0) 
= 0 

/"(*o) < 
0} 

*=> 
\g''(x0) 

< 0. 

It is clear that the two operations of applying the second derivative test on the original 
function /(x)and applying it on g{x) 

= In f(x) are mathematically equivalent. Which 
of the two operations is easier? Using g(x) to compute the mode essentially presents 
two main advantages. First, a density function is usually the product of several factors. 

Taking natural logarithms converts products into sums, which are easier to differen 
tiate. In this vein, the method is akin to logarithmic differentiation typically taught 
in first semester calculus. In fact, logarithmic differentiation is routinely employed in 

finding maximum likelihood estimates by using log-likelihoods (see, for example, [1, 
Ch. 6]). This paper applies the same idea to finding the mode. Second, many density 
functions involve the exponential function, an elementary transcendental. The natu 
ral logarithm, being its inverse, leads to the "cancellation" effect, and this results in 

polynomials, which are easier to differentiate. 

Examples 
We illustrate the procedure with three positively skewed densities: extreme value (Type 

I), Weibull, and lognormal (see [2, Ch. Ill] for a general discussion). Of course, the 
same procedure is applicable to symmetric pdfs that satisfy the condition f(\? + 

x) = 
f(? 

? 
x) for symmetry about the point x = /x (for example, Gaussian, Laplace, 

Cauchy, and logistic distributions). However, in these cases, where the above condition 
is clearly fulfilled, the mean, median, and mode coincide; hence, the mode is obviously 

located at jc = t?, which eliminates the need for further computation. 
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Extreme value density The limiting distribution of the greatest (or least) value in 
ordered random samples has found application in studying such diverse phenomena 
as flood flows, earthquakes, rainfall, corrosion, and even stock price movements. Ex 

treme value distributions generally belong to one of three families, called Types 1, 2, 
and 3. Of these, Type 1 is by far the most common, referred to by some authors as 
"the" extreme value distribution. The extreme value (Type I) distribution (also called 

Gumbel) has a pdf given by 

fix) 
= ?-le-(x-?)/e expi-e-(x-?)/e) 

- oo < jc < oo, 

where ?jl e Rl is the location parameter and 0 > 0 is a scale parameter. Now, 

gix) 
= 

Infix) 
= -In (9 

- 
(jc 

- 
?)/0 

- 
e-(x-?)/e. 

Taking the first derivative, we find 

so the only critical value is at jc = /z. The second derivative of gix) is 

g"ix) 
= 

-?-2e-(x-^e, 

which is negative at x = ?jl. Thus, the extreme value (Type I) distribution has a single 
mode located at x = 

fi. 

Weibull distribution This distribution is named after Waloddi Weibull, a Swedish 

physicist who used it to represent the breaking strength of materials. It has found 

widespread use in reliability and quality control studies. From a broader perspective, 
the Weibull arises as a special case of a Type 3 extreme value distribution. A random 
variable X is defined to have a Weibull distribution if its pdf is given by 

fix) 
= 

c/aix/a)c~le-(x/a)C jc> 0, 

where a > 0 is a scale parameter and c > 0 is a shape parameter. For c ? 
\, the 

distribution degenerates into the negative exponential with X = 
I/a. For c < 1, there 

is a vertical asymptote at x = 0. We consider the case c > 1. 

gix) = In fix) 
= 

\nic/a) + (c 
- 

1) ]n(x/a) 
- 

xc/ac. 

Taking the first derivative gives 

g'ix) 
= 

ic- 1)/jc 
- 

cx(c~l)/ac, 

and we locate the critical value at jc = a[(c 
? 

l)/c]1/c. Differentiating again gives 

c - 1 c{c 
- 

l)xc~2 
g ix) =-j-c-' xl ac 

which is clearly negative when jc > 0, a > 0, and c > 1. It may be noted that the 

negativity of the above expression is established directly based on restrictions on x, a, 
and c without actually substituting in the critical value itself. Furthermore, the nega 

tivity reveals the nature of the critical point at jc = a[ic 
? 

l)/c]l/c as being the mode 

(maximum ordinate). 
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Lognormal density This density usefully represents the distribution of size for var 

ied kinds of 'natural' economic or physical units. The case of the lognormal requires 
somewhat more mathematical manipulation than the previous two examples. Imagine 
these computations when using the original function fix)\ The pdf of the lognormal 
is 

fix) =-l e-Q**-tf/*>2 x > o, 
crjcV27r 

where /x e Rland a > 0 are the location and scale parameters. Now, by taking the 
natural logarithm of fix) in the customary fashion, we get 

gix) = ln/(jc) = ? lna ? lnjc ? In \?2jz 
? 

(hue 
? 

fi)2 /2a2. 

Differentiation yields 

1 (In* 
- 

fM) 
g(x) =---, 

x alx 

2 
from which we find that the critical value is x = e^~G . Differentiating again, we get 

//, x 1 1 ? 1 ? In* + fj, 
g (x) = ? 

xl a1 

which is negative at the critical value. This confirms the existence of the mode at 
jc = e^~a . In conclusion, we note that the method given here can also be used to 

locate inflection points of the density curve by solving the equation 

f"{x) 
= 

e'wg"(x) + e^[g'(x)f 
= 0. 
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Searching for M?bius 

Al Cuoco (acuoco@edc.org), Education Development Center, Newton, MA 02158 

The M?bius function /x, defined on the integers by 

ix{n) = 
1 ifw = l 

0 if n is divisible by a square 

(? 1)* if n is the product of k distinct primes, 
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