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Finally, to see that Theorem 3 is sharp, we again consider the case when 0 < ε < h,

but this time we put

fε(x) =
⎧⎨
⎩

x5

30ε2 for 0 ≤ x ≤ ε,

x3

3 − 2εx2

3 + ε2x
2 − 2ε3

15 for ε < x ≤ h,

and extend fε to be an even function. Another straightforward but tedious argument
shows that fε is three times continuously differentiable and

∣∣ f ′′′
ε (x)

∣∣ ≤ 2 for all x ∈
[−h, h]. In this case M = 2 and our estimate in Theorem 3 becomes h4

18 ; a direct cal-

culation shows h4

18 − |E2| ≤ O(ε2). Note that in [4], Talman shows that |E2| ≤ 2Mh4

9 .
This is similar in form to our result but not sharp as Talman himself points out.
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A Heron triangle is one with rational sides and rational area. A glance at sources
ranging from Dickson’s wonderful compilation [1] to the modern Wolfram website [2]
indicates that such triangles have not only been but will continue to be a fascination. If
a Heron triangle is scaled up using the lowest common multiple of the denominators
of the sidelengths, then the triangle is similar to one having integer sides and integer
area. Three integer parameters m, n, k can then be given that generate all such Heron
triangles: the sides have the form (see [2])

n(m2 + k2), m(n2 + k2), (m + n)(mn − k2).

In this note we start with a Heron triangle and scale it (usually down) to produce a
Heron triangle with altitude 2. We are then able to obtain two rational parameters that
generate this family of Heron triangles.

THEOREM. After scaling, every Heron triangle has the form of the right-most tri-
angle in the figure below, for rationals r and s with r, s > 1.

Proof. Any triangle can be oriented so that it has the configuration of the first tri-
angle in the figure. If we assume that it is a Heron triangle and if we multiply its sides
A, B, C and its (rational) altitude h by the scaling factor 2/h, we obtain the second
triangle in the figure with rational sides a, b, c and altitude 2.



VOL. 81, NO. 4, OCTOBER 2008 301

A h B a
2A

h
      2   b

2B

h
a s

1

s
       2       b r

1

r

C c
2C

h
c s

1

s
r

1

r

Since a, b > 2 there are real numbers r, s > 1 such that a = s + 1/s and b = r +
1/r . One simply solves the equations s2 − as + 1 = 0 and r 2 − br + 1 = 0, obtaining

s = a + √
a2 − 4

2
, r = b + √

b2 − 4

2
.

Now c is sum of the bases of the two right triangles in the figure (third triangle); using
the Pythagorean theorem twice we see that c = s − 1/s + r − 1/r . It remains to show
that both r and s are rational. But this follows from the equations

a + b + c

2
= r + s,

a + b − c

2
= 1

r
+ 1

s
,

a − b + c

2
= s − 1

r
,

−a + b + c

2
= r − 1

s
.

Dividing the first equation by the second shows that rs is rational; the third equation
then shows that r is rational, and s follows suit because of the fourth equation.

The interested reader is invited to show how the (r, s) parameters yield the (m, n, k)

parameters.
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