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The catenary can easily be mistaken for a parabola. Even Galileo made this error. In
his Discorsi of 1638 [3], he explained that if one were to hang a light chain over two
nails at the same level, then the chain would assume the shape of a parabola. Students
who’ve had a course in differential equations know, that in fact, this chain takes the
shape of the catenary. They may also know that if the chain is subjected to a uniform
load, then the chain assumes the form of a parabola; the shape of a suspension bridge,
in which the bridge deck provides the load, is another example [2].

One connection between these two curves is that they arise under the similar phys-
ical conditions just mentioned. In this paper we establish a different connection. Sup-
pose one were to roll the parabola y = x2 along the x-axis without slipping. How does
its focus move? In other words, what is the locus of this focus? It turns out, as we will
demonstrate, that the locus is a catenary!

Geometrical description of the catenary
Suppose we roll the parabola y = x2 along the x-axis as shown in Figure 1. We assume
that the parabola does not slip as it rolls and we wish to determine the path followed
by the focus F(0, 1

4) of the parabola.
To solve this problem we introduce variables as indicated in Figure 2. Here, θ1 =

θ1(t) is the angle between the tangent line to the parabola at P(t, t2) and the x-axis;
θ2 = θ2(t) is the angle between line FP and the x-axis; α(t) = θ1 − θ2 is the angle

VOL. 41, NO. 2, MARCH 2010 THE COLLEGE MATHEMATICS JOURNAL 129



F(0,1/4)

x

y

Figure 1. Rolling the parabola y = x2 on the x-axis.

between this tangent line and the line FP. Also, d = d(t) is the length of line segment
FP, and s = s(t) is the arc length of the parabola between its vertex V (0, 0) and P .
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Figure 2.

At some point in time the point P will move to the location P ′ on the x-axis in
Figure 3. At this instant, F will be at F ′(x, y). We will find explicit formulas for the
coordinates of F ′ as functions of t .

Since the parabola rolls without slipping, the length of the line segment V P ′ is s(t).
The coordinates x(t) and y(t) of F ′ are given by

x(t) = s − d cos α and y(t) = d sin α. (1)

The slope of the tangent line to the parabola at P is

tan θ1 = 2t,
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Figure 3.

and the slope of line FP is

tan θ2 = t2 − 1
4

t
.

Using standard trigonometry, after simplifying we obtain

tan α = 1

2t
,

from which it follows that

cos α = t√
t2 + 1

4

and sin α = 1

2
√

t2 + 1
4

.

From Figure 2, using the distance formula, we obtain

d = |F P| = t2 + 1

4
.

Finally, we compute s(t) by using the standard formula for arc length [4]. We have

s(t) =
∫ t

0

√
1 +

(
dy

dx

)2

dx

=
∫ t

0

√
1 + (2x)2 dx .

We leave it as an exercise for the reader to show that the value of this integral is given
by

s(t) = t

√
t2 + 1

4
+ 1

4
ln

(
2t + 2

√
t2 + 1

4

)
.
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Since we now have explicit expressions for α, d and s as functions of t we can compute
the coordinates (x, y) of F ′ by substituting these expressions into (1):

x(t) = 1

4
ln

(
2t + 2

√
t2 + 1

4

)
(2)

y(t) = 1

2

√
t2 + 1

4
. (3)

Now that we have expressed x and y in terms of the parameter t , let’s try to eliminate
t . Solving for t in (2) gives

t = e4x − e−4x

4
.

Substituting this last expression in (3), we obtain

y = 1

2

√(
e4x − e−4x

4

)2

+ 1

4
.

Further simplification yields

y = 1

4

(
e4x + e−4x

2

)
= 1

4
cosh 4x .

Hence the locus of the focus is the catenary of Figure 4.
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Figure 4.

Conclusion
We have demonstrated a geometric connection between the parabola and the cate-
nary—specifically, that the locus of the focus of a parabola which rolls on the x-axis
without slipping is a catenary.

132 © THE MATHEMATICAL ASSOCIATION OF AMERICA



We close with some related questions for the reader:

1. What is the locus of the focus of the parabola y = x2 as it rolls along some
other curve (such as another parabola or perhaps an ellipse or hyperbola) which
is tangent to the parabola? It can be shown, for example, that the locus of the
focus of the parabola y = x2 as it rolls along the parabola y = −x2 is simply the
directrix of the second parabola. That is, the focus of the first parabola moves
horizontally (see problem A5 on the 1974 William Lowell Putnam Mathematical
Competition [1]).

2. What is the locus of some point on the axis (perhaps the vertex) of the parabola
y = x2 as it rolls along the x-axis or along some other curve?

3. What if the rolling curve is not a parabola? Can the method discussed above be
adapted to find the locus of a point associated with a general smooth curve as
this curve rolls along a fixed straight line?

Summary. The catenary is usually introduced as the solution to the hanging flexible cable
problem. This is a physical description of a catenary. In this article we give a geometrical
description of a catenary. Specifically we show that the catenary is the locus of the focus of a
certain parabola which rolls on the x-axis.
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