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Ev’ry valley shall be exalted, and ev’ry mountain and hill made low;
the crooked straight, and the rough places plain. Isaiah 40:4

The idea of sledge-hammer integration
Imagine a region in the first quadrant bounded above by a curve y = f (x) and below
by the x-axis, and lying between x = 0 and x = 1. Suppose this region is physically
realized by a uniform layer of an incompressible substance, perhaps clay or putty.
To calculate the area of the region, pound the curve from above—with a hammer,
or some other tool—in an area-preserving way. Local maxima decrease and, because
the process is area preserving and constrained by the vertical edges, local minima
increase. Protrusions diminish and pot-holes fill up; valleys are exalted and hills made
low. Ultimately, the region becomes a rectangle, which, because its base is 1, has height
equal to the area under the curve. This is sledge-hammer integration. By re-scaling, it
can be applied to any interval. The choice of (0, 1) is dictated by convenience.

This vision of integration, although intuitively obvious, seems not to be in text-
books. It is offered here, together with the analytic formulation that follows, as a sup-
plement to the usual discussion of integration carried out, for example, in introductory
calculus classes and texts.

Analytic method
This is integration as averaging. For the first blow of the hammer, specifically average
the values of f (x) that are at positions symmetric with respect to x = 1/2. In other
words, replace f (x) with g(x) = ( f (x) + f (1 − x))/2. An example is given in Figure
1, where the first plot (top-left) gives the curve f (x) = x2. In the second plot (top-
right), both f (x) and f (1 − x) are shown and in the third plot (middle-left) g is added.
These three curves all enclose the same area. The newest curve in each plot is drawn
heavier, for easy identification.

By construction, g is symmetric with respect to x = 1/2. Further flatten f (x) by
taking the first half of g (from 0 to 1/2) and stretch it to the full interval (0, 1) by
substituting x/2 for x . This is done in the fourth plot of Figure 1.

To summarize, we propose to average a given function f0(x) = f (x) by replacing
it with

f1(x) = f0(x/2) + f0(1 − x/2)
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Figure 1.

which is the first step of an iterative process defined by

fn(x) = fn−1(x/2) + fn−1(1 − x/2)

2
.

Successive functions will be increasingly flatter versions of the initial function.
Two further steps of our example, f2(x) and f3(x), are added in the bottom two

plots of Figure 1. All six curves in the final plot have the same integral. Note that f3 is
nearly a constant, namely 1/3, which is the value of the integral of f from 0 to 1.

A second example is presented in Figure 2 with f (x) = Abs(x + Cos(17x)). This
plot shows several iterations of our averaging process applied to f (depicted by the
solid curve). Iterations f1 to f4 are shown by dashed lines, with dash-width progres-
sively longer for higher iteration indices. As a third example, if f0 = Cos(ax + b),
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Figure 2.
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then f1 = Cos((a + 2b)/2) Cos(a(1 − x)/2); note wavelength doubling means fewer
valleys.

At this stage, we could prove a theorem regarding the convergence of the algorithm
to the desired integral, but there is a better way to convince students that this method
successfully approximates the integral of f from 0 to 1.

Why it works
Consider a specific stage of the process, for example, the third iteration. In terms of
f (x), f3(x) has the form,

f3(x) = 1
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The values at which each f is evaluated vary as x ranges from 0 to 1. These values are
depicted in Figure 3, which shows that although f3 usually averages eight values of f ,
the endpoints are exceptions.
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Figure 3.

Specifically, when x = 0 we get,

f3(0) = 1
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which is the trapezoid method applied to f (with four subdivisions). In contrast, when
x = 1/2, we get,
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This is the mid-point method applied to f (with eight subdivisions). Finally, at x = 1,

f3(1) = 1
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which is the mid-point method (with four subdivisions). Of course, both trapezoid and
mid-point methods are well-known numerical integration techniques.

This is perfectly general. For all positive integers n, fn(0) gives a trapezoid method
approximation; while fn(1/2) and fn(1) express the mid-point method. Other eval-
uations of fn are particular Riemann sums. This shows clearly why sledge-hammer
integration works.
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