
Wieferich Primes and Period Lengths 
for the Expansions of Fractions 

GENE GARZA 
JEFF YOUNG 

University of Montevallo 
Montevallo, Al 35115 

genesr@prodragon.com 

It is well known that some decimal expansions terminate, while others repeat, at 
least eventually, in patterns, which may be short or lengthy (we shall call this repeating 
pattern the period of the expansion). Here we will extend some known results while 
exploring expansions of fractions in any base. Our goal will be to find a formula for the 
length of the period of such expansions. The interested reader is referred to the recent 
award-winning article by Jones and Pearce, who show how to display such decimal 
expansions graphically [3]. 

We will consider both the expansions of (the reciprocals of) primes and of com- 
posites. It would seem that the easier part of this problem would be that of primes. 
However, there are difficulties/anomalies among primes that make it hard to find a for- 
mula that works in all cases. The most interesting such case is that of Wieferich primes, 
whose reciprocals are characterized by expansions whose periods are the same length 
as the periods of their squares. For example, the length of the period of 1/1093 is 1092 
which is the same as that of 1/10932. This, as we shall see, is not normally the case. 
For someone seeking a simple formula, this is bad news. However, as our table at the 
end shows, Wieferich primes are quite rare. 

Preliminaries Let's review what is meant by the expansion of a fraction and, in 
particular, the decimal expansion of a fraction. A few examples should suffice. In what 
follows, a line over digits in a decimal expansion (or expansion in any base b) will 
denote that those digits repeat infinitely often in that expansion. 

1/3 = 0.3 (period I, base 10) 
1/3 = 0.01 (period 2, base 2) 
1/9 = 0.1 (period 1, base 10) 
1/9 = 0.000111 (period 6, base 2) 

1/27 = 0.037 (period 3, base 10) 
1/27 = 0.000010010111101101 (period 18, base 2) 

We say that 0.3 = 0.333... is the expansion for 1/3 in base 10 (decimal), that 
0.01 = 0.010101 ? ? is the expansion for 1/3 in base 2, etc. The expansions in bases 
other than 10 can be obtained by long division after converting to the new base. 

PROPOSITION. The period of the expansion of 1 /x, in base b, is the smallest num- 
ber, say p, for which bP = 1 (modx). 

That is, the period is the smallest number p such that x I bP - 1. (This is basically 
Th. 4, section 15 from Dudley's book [2].) 

DEFINITION 1. By the period of a number, x, in base b, we shall mean the period 
of the expansion of /x in base b. 
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When considering expansions, it will be our intention to concentrate on just the 
expansions of reciprocals of integers. This is sufficient since the length of the period 
of a fraction depends only on the denominator as long as the numerator is relatively 
prime to the denominator. To see this, consider the following in base ten: 

1/7 = 0.142857 

10/7 = 1 + 3/7 = 1.428571 

100/7 = 14 + 2/7 = 14.285714 

1000/7 = 142 + 6/7 = 142.857142 

10000/7 = 1428 + 4/7 = 1428.571428 

100000/7 = 14285 + 5/7 = 14285.714285 

Clearly then, the length of the expansion for any proper fraction with denominator 7 
is 6. Different numerators simply serve to change the starting digit of the period. For 
other bases b, we need only note that b = 10b; that is, in base b, b is 10. Thus, for 
any given base, a reduced proper fraction with denominator x will have a period of the 
same length as 1/x. 

Now consider the decimal expansions for 3, 6, 15, and 30: 

1/3 = 0.3 

1/6 = 0.16 

1/15 = 0.06 

1/30 = 0.03 

These expansions suggest that factors of the base in the denominators do not af- 
fect the length of the period, but only delay its beginning. This is easily seen in the 
following example: 

1/7 = 0.142857 

1/35 = 2/(10 7) = .0285741 

1/14 = 5/(10 7) = 0.0714285 

Thus, when looking for the length of the period for an expansion it is enough to 
factor out all numbers from the denominator that divide the base, and determine the 
length of the period for the remaining number. 

Periods of composites It seems natural to ask about the periods of composites whose 
factors may or may not be repeated and whose factors include none of the factors of the 
base. Some of these questions have been answered, and it is our purpose to consider 
these questions and to provide some additional answers. 

First of all, it is well known that the expansion of a composite whose prime factors 
are not repeated and are not factors of the base has a period length that is just the 
lcm (least common multiple) of the periods of the individual factors [2]. For example, 
the period of 77 in base 10 is 6, since the period of 7 is 6, the period of 11 is 2, and 
lcm(6, 2) = 6. Similarly, the period of 341 = 11 ? 31 is 30, since the period of 11 is 2 
and the period of 31 is 15. 

The "lcm rule" makes such problems quite manageable. It remains to consider pow- 
ers of single primes. A few examples would again be useful. In base 10, 

1/7 = 0.142857 (period 6) 
1/72 = 0.020408163265306122448979591836734693877551 (period 42) 
1/73 = 0.0029155 .. (period 294). 
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In base 2, 

1/7 = 0.001 (period 3) 
1/72 = 0.000001010011100101111 (period 21) 
1/73 = 0.000000001 .. (period 147). 

Careful observation leads one to conjecture that the period for, say xn, when x 
is prime, is just the period of x multiplied by xn-l. The unfortunate difficulty with 
attempting to prove this power rule conjecture is that it is not true! Counterexamples 
are abundant; just look at 1/3, 1/9, and 127 in base 10. The periods for the expansions 
of these numbers are 1, 1, and 3, respectively. 

However, there is something special about 9 in base 10, which will eventually lead 
us to refine our conjecture. Actually, for any base b there is something special about 
the expansion of 1/(b - 1). One can see this by considering the following geometric 
series in base b: 

1 I 1 1 

b-l b b2 b3 

In "decimal point" notation for base b, the expansion for b - 1 is nothing more than 
. 111 . . . Because of this, any factor of b - 1 has a period of length I in base b. 

To illustrate, let b- 1 be the product of, say, x and y (which are both less than 
b, and therefore are just "digits" in base b), and consider the expansion in base b 
of l/x. It is not too hard to see that it is nothing more than .yyy . . For example in 
base 11, 1/2 = .555... and 1/5 = .222 .. . This may be verified by observing that 
1/2 is nothing more than 1/2 = 5/11 + 5/11 5/113 * . -. Likewise, 1/5 = 2/11 + 
2/112+ 2113 .... 

In base b = 10 the only factors of b- I are 3 and 9. Here, we note that 101 
1 (mod 3) and that 10' = 1 (mod32). 

Period one primes For a particular base b, factors of b - 1, which we call period 
one primes, provide counterexamples to our conjectured power rule formula. However, 
in any given base, period one primes will obviously be scarce so we simply eliminate 
all period one primes from consideration. In base 10, 3 is easily verified as the only 
period one prime. Of course, base 2 has no period one primes. 

If we eliminate all period one primes and reconsider our conjecture, we are once 
again doomed-but for a different reason. As we shall see shortly, there are certain 
exceptions that occur, perhaps in all bases. So, what can we say with confidence? Well, 
it is certainly true, as we shall prove for any prime x and any base b, that bP 
1 (mod x), where p is the period of x in base b. 

Of course, this does not mean that pxn- is actually the length of the period for the 

expansion of 1 /x". It is well known [2] that the period of xn must divide b"-I - 1, 
but we do not know that pXn-l is the smallest such number. What might happen in this 
case? In our earlier efforts to prove the power rule, the difficulty always occurred at 
the same point. It seemed unlikely at first that some x2 might divide bp - 1, where p 
is the period of x, since this would imply that the period of x2 is the same as the period 
of x. This brings us to the Wieferich primes. 

Wieferich primes A Wieferich prime in base b is a prime number, x that satisfies 
the congruence 

bX-1 1 (modx2). 
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(In some discussions, the base b is limited to be 2.) Are they common? Do they exist in 
all bases? The answers to these questions are not all known. However, it is known [5] 
that Wieferich primes exist for many different bases, and we offer a table of Wieferich 

primes at the end of this Note. 
In base 2, for example, 1093 and 3511 are Wieferich primes. This means that not 

only is 21092 _ 1 (mod 1093) and 23510 = 1 (mod 3511) (which follows by Fermat's 
Little Theorm [2]), but also that 21092 = 1 (mod 10932) and 23510 = 1 (mod 35112). 
Crandall, Dilcher, and Pomerance [1] showed in 1997 that the only base-2 Wieferich 

primes below 4 1012 are 1093 and 3511. 
Actually, we will characterize Wieferich primes slightly differently. Of course, since 

x - 1 must be divisible by the period p, we change this definition to primes charac- 
terized by bP = 1 (modx2). (In light of the upcoming corollary with mq = x- 1 
and n = 2, we see that the new definition is equivalent to the previous one.) We note 
that if bP = 1 (modxn) where n is anything higher than 2, then it is also true that 
bP = 1 (modx2). Thus, for our purposes, if bP = 1 (modx3) then x is a Wieferich 

prime for base b. We shall also refer to Wieferich primes as "primes with square peri- 
ods" to emphasize the exceptional cases where the periods of the expansions for 1/x 
are the same as the periods of the expansions for their squares, 1/x2. 

There are, of course, period one numbers with not only square periods, but cube 

periods and even higher. To see this, consider 91 - 1 (mod 2), 91 = 1 (mod 22), 91 
1 (mod 23). Here the period for each of 2, 22 and 23 is 1 in base 9. Two better examples 
might be 310 = 1 (mod 112) and 74 1 (mod 52), where 310 = 1 (mod 11) and 74 
1 (mod 5). It is thus apparent that if one is to compute, by way of some formula, the 

period for an expansion in any base, then those rare numbers with square periods must 
be considered and discounted. Indeed, we shall derive such a formula for the length of 
the period of a number whenever period one numbers and numbers with square periods 
are discarded. We will call this formula by the obvious name, the power rule. 

The power rule Before stating our main theorem we need the following lemmas and 
corollaries: 

LEMMA 1. Suppose ai = 1 (modx) for each ai, i = 1, ..., m, where m > O. Then 
ai = 0 (modx) if and only if m = 0 (mod x). 

The proof is left as an exercise for the reader. 

COROLLARY. If bmq 1 (mod x) for n > 1 where q is a multiple of the period of 
x, but m is not a multiple of x, then bq = 1 (modx). 

Proof To see this we will rewrite (bq - 1) as (bq)m _ 1 and write q as dp where d 
is an integer. Then we factor bmq - 1 = bmd - 1 as (bpd - )(bpd(m-1) + bpd(m-2) + 

... + 1) = (bq - 1)(bpd(m-1) + bpd(m-2) + ... + 1). Applying Lemma 1 to the second 

factor, which has m terms, each of which is congruent to 1 (modx) (since p is the 

period of x), we see that xn must divide (bq - 1) so that bq = 1 (mod x). 

LEMMA 2. If x is an odd prime, k > 1, and bPx(k = 1 (modxk+l) where p is the 

period of x in base b, then bPx(k2) 1 (modxk). (Note that x is selected to be odd, 
since 2 is period one for all odd bases. Otherwise, 72 = 1 (mod 24) while 71 is not 1 
(mod 23) would be an obvious exception.) 

Proof. Since p is the period of x, we have bP = 1 (modx) and we can write bP as 
(1 + nx) for some integer n. By the Binomial Theorem, 
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(1) (bP)X() 1 + nxk (modxk+l) and 

(2) (bP)(k) + nxk-1 (mod k). 

But, by our hypothesis, bx(k-1) = 1 (modxk+ ). This, along with (1) implies that x I n. 
The conclusion that bPx(k ) 1 (modxk) then follows from (2) and the proof is com- 

plete. U 

The idea behind Lemma 2 is that under certain conditions factors of x can be can- 
celled from congruences. Now we are prepared to state and prove our main result: 

POWER RULE THEOREM. If x is an odd prime, N = xn, n >1, and x is not a 

period one prime nor a Wieferich prime for base b, that is, not a prime with a square 
period, then the period of N is pxn-1 where p is the period of x. 

Proof. We need to show two things: 

I. x" I bp(n"-) _ 1. 
II. If x" I bQ - 1, then Q > pxn-. 

I. This follows immediately from the binomial theorem since bp = 1 (modx). 
II. We must show for n > 2 that if x I bQ - 1, then Q > px"-l for since we 

already know that it is true for n = 1. Assume not, that is, assume Q < px"-1. 
Once again, we know that Q must be a multiple of p, the period of x, since 

x I bQ -1 implies x I b - I. So let Q = mp. There are two cases to consider. 
First, let's consider the case where m is a multiple of x. We write m = rxt 

where 1 < t < n - I and r is not a multiple of x, so that Q = rxtp. Here we have 
xn j b'p - 1. By the Corollary, we can cancel the r so that x I bpx - I. By Lemma 2, 
we can cancel one x from both sides of the expression to obtain x-1 b P"- - 1. This 
we may repeat until we have x"-t I b' - since under our assumptions n -t > 2. 
But this means that x is a Wieferich prime contrary to our hypotheses, so we conclude 
that m is not a multiple of x. 

Second and finally, we consider what happens when m is not a multiple of x. In this 
case we have x" I b"'"' - 1. Once again using the Corollary, we can cancel m so that 
xn I bP - 1. Since n > 2, we conclude that x must be a Wieferich prime, which once 
again violates our hypothesis. This completes the proof of the Power Rule Theorem. 

Conclusion Together with the lcm rule, the power rule provides a formula for the 
period of the expansion for the reciprocal of any composite-as long as no factors of 
the composite are to be excluded such as Wieferich primes or period one numbers. This 
formula may be evaluated easily as long as the periods for the individual prime factors 
are known. Predicting the periods for an arbitrary prime is, however, still elusive. A 
table of Wieferich primes is provided to demonstrate their scarcity in bases up to 25 
for numbers up to 218. (Period one numbers that qualify as Wieferich primes, such as 
2 in base 9, have been removed from the table.) This table contains two particularly 
interesting entries: 186 - 1 (mod72) and 196 = 1 (mod72). The interesting part is 
that the following congruences are also valid: 186 - 1 (mod 73) and 196 - 1 (mod 73). 
This shows that there exist non period-one Wieferich primes with cube periods-in this 
case, for bases 18 and 19. For other bases this is still an open question [5]. Not quite 
so obvious from the table is the fact that 183 = 1 (mod 72) and 183 = 1 (mod 73). This 
answers, negatively, the question [5] whether Wieferich primes, x, must have periods 
of maximal length, that is, x - 1. Another such example is: 310 _ 1 (mod 112) and 
35 = 1 (mod 112). 



TABLE 1: Table of Wieferich primes up to 218 for 
bases up to 25. 

base Wieferich primes base Wieferich primes 

2 1093, 3511 14 29,353 
3 11 15 29131 
4 1093,3511 16 1093,3511 
5 20771,40487 17 3,46021,48947 
6 66161 18 5,7,37,331,33923 
7 5 19 7,13,43,137 
8 3,1093,3511 20 281,46457 
9 11 21 None 

10 487 22 13,673 
11 71 23 13 
12 2693, 123653 24 5,25633 
13 863 25 20771,40487 

Open Questions To repeat, it is known that Wieferich primes satisfying the congru- 
ence, bP = 1 (mod x2), exist and are rare, but it is not known if any Wieferich primes, 
other than period one primes, satisfy the congruence bP = 1 (mod x), n > 2 except 
for bases 18 and 19. Also, it is not known if there are Wieferich primes for each base; 
or even if the set of such primes is infinite (discounting period one primes, once again). 

CONJECTURE. Wieferich primes exist for all bases and, furthermore, the following 
relationship holds in any base, b, for infinitely many primes, x, and for any value of n: 
bX- 1 (modxn). 
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