
VOL. 77, NO. 3, JUNE 2004 227 

Another Look at Sylow's Third Theorem 
EUGENE SPIEGEL 

University of Connecticut 
Storrs, Connecticut 06269 
spiegel@math.uconn.edu 

Among the results that Sylow showed in his famous 1872 paper [12] is what is now 
usually called Sylow's third theorem. 

If G is a finite group of order IGI = pnm where p is a prime, n is a positive 
integer, and p and m are relatively prime, then the number, Np, of subgroups of 
G of order pn satisfies Np = 1 (modulo p). 

This result is among the arsenal of tools that every first year algebra student ob- 
tains. A group where the order of every element is a power of p is called a p-group; 
a p-Sylow subgroup of G is a p-subgroup of G of maximal order p". The idea of Sy- 
low's proof, which was originally stated in terms of permutation groups, is to look at 
the size of the equivalence classes obtained when all p-Sylow subgroups of G are con- 
jugated by the elements of a fixed p-Sylow subgroup of G. The existence of a p-Sylow 
subgroup was needed for the proof of the third Sylow theorem, although the conclusion 
of the theorem certainly implies that there are p-Sylow subgroups. Using the Sylow 
results, Frobenius, in 1895 [1], proved a generalization: The number of subgroups of 
G of order ps is congruent to 1 modulo p whenever 1 < s < n. 

Most current texts show the existence of a p-Sylow subgroup and prove Sylow's 
third theorem using arguments that involve a group acting on a set. This method of 
proof for the existence of a p-Sylow subgroup was due to Miller between 1910 and 
1915 [8, 9], but, according to Jacobson [9, p. 83], was "forgotten until it was redis- 
covered" in 1959 by Wielandt [14]. Krull [7] showed how Wielandt's method could 
be used to obtain Frobenius' generalization, and Gallagher, in 1967 [2], simplified the 
argument to one that depends upon the order of G rather than the group itself. Illus- 
trating the combinatorics of finite group actions is part of the motivation to use this 
method of proof both to demonstrate the existence of p-Sylow subgroups in a finite 
group and to determine their number. 

In this note we offer another method to prove these results. Our combinatorial tool 
will be Mobius inversion on the lattice of subgroups of a finite group. We will see that 
an application of this method will easily lead to Frobenius' theorem, in fact, a gener- 
alization of it. Of course, part of the reason for presenting this proof is to highlight the 
method. 

Mobius inversion In this section, which can be skimmed by those conversant with 
Mobius inversion, we present all needed facts about incidence algebras and Mobius 
inversion. Suppose X is a finite partially ordered set. We use standard interval notation 
in X, for example, (x, y] = {z E X I x < z < y}. If X has a minimum or maximum 
element, it will be denoted by 0 or 1 respectively. 

The incidence algebra, I(X, C), of X over C, where C is the complex field, is 
defined as I(X, C) = {f : X x X -+ C I f(x, y) = 0 if x ; y} with the operations 
of addition and scalar multiplication defined in the usual way, while multiplication 
is defined by convolution, fg(x, y) = ,E[x,yI f(x, z)g(z, y), for f, g E I(X, C). 
It is straightforward to check that I (X, C) is both a vector space over C and a ring. This 
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makes it a C-algebra with identity 8, where 8(x, x) = 1 for x E X, and 8(x, y) = 0, 
if x : y. If ( E I (X, C) is such that for each x E X, 4(x, x) is a unit in C, then 4 
is invertible. Its inverse will be seen to be 0' E I (X, C), having the following prop- 
erties: For x e X, 0'(x, x) = (0(x, x))- , while if 0'(u, v) has been given for any 
[u, v]l < I[x, y]l, then 0'(x, y) satisfies 

0'(x, y) =-( ( (X,z)' (z, )) ?(x, )-1 
z:x <z<y 

It is easy to verify that ?' is a right inverse for 0. Similarly, 4 has a left inverse. It 
follows that an element, 0 E I (X, C), has an inverse if and only if 0 (x, x) is a unit for 
each x E X. In particular, the element E I (X, C) given by 

) ifx< y 
((x,y )= 10 otherwise 

is a unit whose inverse, /, is called the Mobius function of the partially ordered set. 
When we need to specify which partially ordered set we are considering, we will let 
,LX denote the Mobius function for the partially ordered set X. 

The importance of the Mobius function is seen in the following result, which is 
known as the Mobius inversion theorem. A more general Mobius inversion theorem 
appears in the seminal paper of Rota [10]. Earlier versions of this theorem can be 
found, for example, in Weisner [13] or Hall [4]. 

THEOREM 1. Let X be a finite partially ordered set andf a function from X to C. 
If, for x E X, 

g(x)= f(Y) 
y: x<y 

then 

f(x) = E (x, y)g(y). 
y: x<y 

Proof. 

E /(x, y)g(y)= E /(x, y)( f(z)) 
y: x<y y: x<y z: y<z 

= E i(x, y)( ((y, z)f(z)) 
y: x<y z: y<z 

= E E (x, y)((y,z z)(z 
y: x<y z: y<z 

= f(z) E g(x,y)((y,z) 
z: x<z y: x<y<z 

= L ((x,z)f(z) 
z: x<z 

= f(x). 

The following proposition presents three properties of the Mobius function, which 
are useful in its computation. The first of these, together with the condition ,u (x, x) = 1 
for every x E X, could be used as the definition of the Mobius function. 
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The third of these properties is a result of Weisner [14]. It applies only when X 
is a lattice, which is a partially ordered set in which every pair of elements, a, b, has 
a least upper bound, denoted a v b, and a greatest lower bound. We are particularly 
interested in the set of all subgroups of a finite group G, partially ordered by inclusion. 
This set, L(G), is a lattice with least element 0 = {e} and greatest element 1 = G. If 
A, B E ?(G), then A v B is the subgroup generated by A and B. 

PROPOSITION 1. Suppose X is a finite partially ordered set with Mdbius func- 
tion tz. 

(i) If x < y X, then Eze[x,y] it(x, z) = 0. 

(ii) If 0q: X - X' is an isomorphism of partially ordered sets, then utx(x, y) = 
lx, (d (x), 0 (y)), for any x, y E X. 

(iii) If X is a finite lattice and a A 0 E X, then 

L gO(0,x)=0. 
x: xva=l 

Proof 

(i) 0 = 8(x, y) = /((x, y) = zE[X,y] ,L(x, z). 

(ii) One can extend 0 to a C-isomorphism ' : I (X, C) - I (X', C). Since p'('x) = 
(x' then 0'(tx) = trx,. 

We check (iii) by induction on IXl. If IXl = 2, then a = 1, and as x v 1 = for 
any x e X, the result follows from (i). Now assume the result for lattices of smaller 
cardinality than that of X. We have 

o= A(0,X)= A ^(0,x)+ L ( L (O, x)) E X(O x). 
xeX xE[O,a] b: a<< x: xva=b x: xva=T 

Looking at the right-hand side of this equation, we note that the first sum is 0 by (i) 
and that each summand in the second sum is 0 by the inductive assumption. The result 
then follows. U 

We now use these properties to calculate the Mobius function of the lattice, L(G), 
of a finite p-group G. The answer was obtained by Kratzer and Thevenez, [6], us- 
ing a different approach. The computation of AL4(G)({e}, G) = -L/(G)(O, 1) is a result 
of P. Hall [3]. For notation, if A is a subgroup of G, let N(A) = NG(A) denote its 
normalizer and write Zk for the direct sum of k copies of a cyclic group of order p. 

THEOREM 2. Let G be a finite p-group, C(G) the lattice of subgroups of G, and 
It its Mobius function. If A, B E ?(G), then 

/(A, B) = (-1)k( if A C B c N(A) and B/A _ Zp 
0 otherwise. 

Proof. If I G I = p the result is easily verified. Continue by induction on the order of 
G, and assume the result for groups of smaller order than that of G. Suppose IGI = pn 
and let A C B be subgroups of G. Since the collection of subgroups between A and 
B is both an interval in ?(B) and in ?C(G), by the induction assumption it is sufficient 
to verify the result when B = G. Suppose, first, that A is not a normal subgroup of G. 
Then A C N(A) C G and 
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0= E gl(A,X) 
XE[A,G] 

= x(A,X)+ E g(A,X). 
Xe[A,N(A)] Xe[A,G]\[A,N(A)] 

The first summation in the last line is zero by Proposition l(i), and each summand 
with X : G in the second summation is zero by our inductive assumption. Hence 
/z(A, G) = 0, verifying the result in this case. 

Suppose now that A is a normal subgroup of G. If {e} : A, by Proposition l(ii), 
r/(G)(A, G) = IL:(G/A)(O, 1) and, as IG/AI < IGI, the result again follows by the 
inductive assumption. Hence, to complete the proof, all that remains is to check the 
result in the case A/(0, 1). Let H be a normal subgroup of G of order p. If X is any 
proper subgroup of G with G = H v X, then G = HX and X G G/H. We conclude 
that all such subgroups, X, are isomorphic, G ' H E X, and, from Proposition l(iii), 
we have /C(G)(O, 1) = -X)c(G/H)(O, 1), where X is the number of proper subgroups, 
X, of G with H v X = G. 

Suppose /Z(G)(O, 1) - 0. It follows that 1LC(G/H)(O, 1) : 0 and, by the inductive 

assumption, G/H _ Z~- and tIc(G/H)(O, 1) = (-1l)n-lp(2). Further G Z To 
calculate ., it is convenient to consider G as an n-dimensional vector space over a 
field of p elements. We are then looking for subspaces, X, of dimension n - 1 which 
do not contain a fixed 1-dimensional subspace, H. The total number of ordered bases 
for all such X is (pn - p)(pn - p2) ... (pn - pn-l), where, for example, the first 
factor comes from choosing the first basis vector of X to be any vector of G other 
than those in H. By a similar argument, each n - 1 dimensional space has (pn-f - 1) 
(pf-l _ p)... (p"-l - p"-2) ordered bases. Hence X = pn-l, it being the quotient of 
these two numbers. We conclude ALt(G)(O, 1) = -pn-l1()n-1p(n21) = (-1)np(2). 
This is the desired value. 1 

The Sylow theorem We now obtain the result we sought by applying Mobius inver- 
sion. Before we give the main result, it is convenient to handle one special case sepa- 
rately in a lemma. The lemma, like the theorem following it, only requires Cauchy's 
theorem. 

LEMMA 1. Let G be a finite group and p a prime dividing the order of G. The 
number, K, of subgroups of G of order p is congruent to 1 modulo p. 

Proof: Suppose C(p) is the collection of all subgroups of order p in G and P is 
a p-subgroup of G of maximum order. We let P act on C(p) by conjugation. For 
A E C(p), Orb(A) = {gAg-l I g E P} is the orbit of A. It is not difficult to check that 
I Orb(A)I is equal to the index of Stab(A) = {g E P I gAg-~ = A) in P. This index, 
which is a power of p, is greater than 1 unless P C N(A). Hence 

IC(p)I = K =K (modulo p), 

where K = I{A E C(p) I P c N(A)}I. When A E C(p) with P c N(A), then AP is 
a p-subgroup of N(A) that contains P. By maximality, A c P. We conclude that K 
is the number of normal subgroups of order p in P. By having the elements of P act 
by conjugation on themselves, one can check that any nontrivial normal subgroup of a 
p-group, in this case P, has a nontrivial intersection with its center, Z(P). In partic- 
ular, any normal subgroup of P of order p is in Z(P), and in fact in Socp(Z(P)) = 
{x E Z(P) I xP = 1} _ Zp, for some integer k > 1. Conversely, each nonidentity ele- 
ment of Socp(Z(P)) generates a normal subgroup of P of order p. Since any subgroup 
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of order p has p - 1 nonidentity elements, we have K _ K = (pk - )/(p- 1)= 
1 + p + * * * + pk-l _ 1 (modulo p), establishing the lemma. c 

We can now give a generalized Sylow's third theorem as an application of Mobius 
inversion. 

THEOREM 3. Let G be afinite group of order exactly divisible by pn, where p is a 
prime and n a positive integer Suppose m, t are nonnegative integers with m < t < n 
and H is a subgroup of G of order pm. Then the number of subgroups of G of order pt, 
each of which contains H, is congruent to 1 modulo p. 

Proof We prove the result by induction on s = n - m. If s = 0 the result is imme- 
diate. Suppose that we know the result for values smaller than s = n - m. Of course, 
if t = m the result is clear. We can thus assume that m < t < n. Let CH(t) be the col- 
lection of subgroups of G of order pt, each of which contains H. Define the function 
f on ?(G) by 

,f(5s)Jl if S E CH(t) 
0 otherwise, 

and the function g on ?(G) by 

g(T) = f(S). 
SeC(G):SDT 

Then g(T) is the number of elements of CH(t) that contain T. We wish to compute 
g(H) = ICH(t)l. Using M6bius inversion in ?(G) we obtain 

f(T)= E , (T, S)g(S). 
S: SDT 

In particular, 

f(H)= E it(H, S)g(S). 
S: SDH 

Of course, g(S) = 0 unless S is a p-group. Furthermore, by Theorem 2, when S is 
a p-group containing H, ,u(H, S) is divisible by p whenever the index of H in S is 
divisible by p2. Hence, 

0 _ g(H)- E g(S) (modulo p). 
SCN(H): S/H_Zp 

That is 

ICH(t)l- _ g(S) (modulo p). 
SCN(H): S/H_Zp 

Each S in this summand is of order pm+l. As n - (m + 1) < s, by the induction as- 
sumption, g(S) = 1 (modulo p). Further, the number of such S coincides with the 
number of subgroups of order p in N(H)/H. By the lemma, this number is congruent 
to 1 modulo p. We conclude that ICH(t) I 1 (modulo p), which establishes the result. 

If in the previous theorem we let m = 0 and t = n then we obtain the first and third 
Sylow theorems. The Frobenius theorem is obtained by letting m = 0. 

231 VOL. 77, NO. 3, JUNE 2004 



Note added in proof: The author thanks Keith Conrad for bringing to my attention another paper of L. Weisner, 
"Some properties of prime-power groups," Trans. AMS 38 (1835), 485-492, in which Weisner proves Theorem 3 
in the case that G is a p-group. 
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Continued from page 246 

In terms of total score (out of a maximum of 252), the highest ranking of the 82 par- 
ticipating teams were as follows: 

Bulgaria 227 Turkey 133 
China 211 Japan 131 
USA 188 Hungary 128 
Vietnam 172 United Kingdom 128 
Russia 167 Canada 119 
Korea 157 Kazakhstan 119 
Romania 143 

The 2003 USAMO was prepared by Titu Andreescu (Chair), Zuming Feng, Kiran 
Kedlaya, and Richard Stong. The Team Selection Test was prepared by Titu Andreescu 
and Zuming Feng. The MOSP was held at the University of Nebraska-Lincoln. Zuming 
Feng (Academic Director), Gregory Galperin, and Melanie Wood served as instructors, 
assisted by Po-Shen Loh and Reid Barton as junior instructors, and Ian Le and Ricky 
Liu as graders. Kiran Kedlaya served as guest instructor. 

For more information about the USAMO or the MOSP, contact Steven Dunbar at 
sdunbar@math.unl.edu. 
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