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Condensing a Slowly Convergent Series
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The condensation test for convergence says that, for any monotone decreasing
positive sequence (a,),;, the convergence of the corresponding series ¥,a, is
equivalent to the convergence of the condensed series ¥, 2"a,.. This test (sometimes
called Cauchy’s condensation test) used to be known to every undergraduate, but has
lately rather fallen out of fashion. Probably the best account of the condensation test
and its numerous generalizations and refinements is still the classic book by Konrad
Knopp [3], now republished by Dover. There is also a good treatment in [2].

We can establish that the condensation test works by the following argument.
Define I(1) =1(2) =1 and I(n) =k for 25! <n < 2F k> 1. We can regard I(n) as
the integer ceiling of log, n. By hypothesis, a,« < a, < a,¢-1 for all the 2F7! values of
n for which I(n) = k. This means that

1
ay, + 3 Y 2kag=2a,+ Y. 2% < Y a, <a, + Y. 2%as
k k n k

whence ¥, a, and ¥,2"a,. converge or diverge together, as asserted.

The test condenses the series by dividing it into chunks, the nth chunk consisting of
2" terms, and because the terms of the series are decreasing, the test need consider
only one representative from each chunk to establish convergence.

Here is an example of the use of the condensation test. If a,=1/n then
2"ay, =2"-(1/2") =1 for all n. Since we know that X1 diverges, the condensation
test tells us that ¥,1/n diverges. Repeated use of the condensation test tells us that

1 1 1 1
Lo L n-l(n)’ Z n-1(n)-1(I(n)) Z n-10n) - 1(U(m)) ICICI(n))) * &

n n

all diverge. Similarly, if a, =1/n® then 2"a,. =2"-(1/2")* =27". Since we know
that ,27" converges, repeated use of the condensation test tells us that
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all converge.
This makes it natural to consider the limiting case ¥,b, where

1
b= n-a(n)
and we define 7(1) = 1, w(n) =1(n)- w(I(n)) for n > 1, so that for example bgss35 =
1/(65536-16-4-2). We assert that the sequence (b,) shrinks to zero more slowly than
do the terms in any of the convergent series given above, but more rapidly than those
in any of the corresponding divergent series. For example, it is clear that



VOL. 68, NO. 4, OCTOBER 1995 299

I(n)-1(U(n))/m(n) = 1/w(I(I(n))) = O with n, and similarly I(n)-[I(I(n))?/m(n) =
I(l(n))/m(I(I(n))) = o with n provided we can show n/m(n)—> . This can be
shown by induction using the fact that 2" /7 (2") =[2" /n*]n/m(n)].

Given our results so far, it is natural to ask whether ¥ b, converges or diverges.
The condensation test appears to give no help, since 2"by. = 1/7(2") = 1/(n- 7(n))
=b,, so the series is transformed into itself. But we shall see that by using a
refinement of the condensation test we can determine not only that the series
converges, but that it does so sufficiently rapidly for us to get a tight estimate of the
limit using a geometric series.

To prove convergence of ¥ b, we argue as follows. Let ¢, be the sum of the first
2" terms, so that ¢, =b; + -+ +b,.. It is clear from the definition of b, that

€y = Cpoy = [ 1 + 1 + -+ i]b
e T L) 2m |
Now divide the interval [1,2] into 2"~! equal parts and consider the corresponding

upper and lower Riemann sums for L = 21 /xdx = log, 2 = 0.693147 . .. . This shows
that

27" >

2 1 1
@—[ S — +-~~+—n]20.
1 X 2"t +1 2" 42 2
Consequently ¢, — ¢, _; < Lb,, and summing this over a range of n gives
¢gn— ¢, <Lby+ -+ +Lbyu=Le, — L < Loyu — L,

whence ¢,. < (1.5 — L) /(1 — L) < 3 for all n, which establishes convergence of 2, b,.
To obtain a closer bound on the value of this sum, argue as follows. From the
Riemann estimate above we have (dividing through by n - (n))
2 L
n-mw(n) = n-mw(n)

—[bgn-1 41 +bgu-1 g+ == +byu] 20

b2" = Lbn - (Cn _Cn—l) > O

Choose n,, and set n; =2", n,=2", etc. Summing the previous inequality from
n=n, + 1 to ny, and noting that by.+1 < 3b,. gives

1
%bnz + %bng + §bnz = Lbnl+l + Lbnl+2 + e +Lbnz + (Cn2 _Cnl+1) = O’

so we have
b, =L(c, —¢c,)—(c,,—¢,)=0.
Similarly,
b,,3 > L(c,12 — c,,l) — (c,,3 —c,,) 20,
b, ,=L(c,,—c,,) —(c,,— c,,) 20,

and so on. Successively multiplying by L and adding the next inequality gives the
following sequence of inequalities

bng_ = L(cnl - Cno) - (Cﬂg _Cnl) = 0’
b:13 + Lbn2 = L2(0n1 - Cno) - (Cn3 - cng) = 0’
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2 3
b, +Lb, +L°b, >L°(c, —c,)—(c,, —c,)=0,

and so on. Summing these and noting that 1 + L + L*> + --- = 1/(1 — L) gives
b, +b, +b, + - I3
ng n n
].S_L4 Z].—L(c"l_cllo)_(;bn_cnl)zo,
whence

( 2 ) bng Cnl - Lcno

1+n—3 ‘T 21T —;1»,,20.

So, for example, setting n, =4 so that n, = 65536 gives the value of the sum of
Y.b, =2.403448 ... with an accuracy of over six decimal places. The same methods
can also be used to evaluate the convergent series introduced earlier, for example

1 1
— =1.644934... ; _—
§n2 §n-[l(n)]2

1
Z n-l(n)-[1(1(n))]*

If further places are required for £, b, (so that we need accurate values for ¢, g4,
etc.) then we can estimate ¢, ,, —c, to within 27°" as follows. Recall that

=1.910214...;

=2.068641...

Ch—Choy = [ 1 + L + e+ i]b
n n—1 2n—1+1 2,1—1 +2 2:1 n*

By using Simpson’s rule
1 4 2 4 4 1 ]

3L = + + + totgoy T
[271—1 on-1 41 9n=1 49 on-1 4.3 2" —1 2

= 1 + 4[ 1 + 1 + e+ i]
gn-1 on-1 41 on-1 49 PA

— 1 + 1 + ces + 1 — i.
2n—2+1 2:1—2+2 211—1 on
to within order 273", so we derive the recurrence relation

bn Ch-1 " Cn-o —-n
€= Cpy = F | P + 3L —2

n—1

to the order 27%"n"!. For example, if we require the value of £,b, to 12 decimal
places, we can calculate c,5, ¢,, directly, then use the recurrence relations to calculate
¢ = 0.000722028313. .. , then use the previous estimate with n, =5 to give the
value of the sum to the required accuracy.

It is worth noting that partitioning the series £1/n® into chunks according to the
rule n; =2n,, ny,=2n,, etc. and summing each of the individual chunks also
produces an (approximately) geometrically decreasing sequence of chunk sums. The
condensation test corresponds to exponential increase in chunk length. The series ¥b,
considered here requires more drastic (i.e. super exponential) growth of chunk lengths
in order to obtain a sustainable geometric rate of decay for the sequence of chunk
sums. This is a slightly counter-intuitive form of the general observation that the more
slowly convergent the series, the higher the order of condensation required to reduce
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it to the geometric case, and is the basis of some of the results in the analysis of
Tsierelsen spaces (see [1]).

The fact that 2 <e (so that L < 1) is vital to convergence. If we define [ ,(n) to be
the integer ceiling of log, n and m(n)=1,(n)-m,(l(n)) then methods similar to
those used earlier show that X [n-m,(n)]™' converges if, and only if, a <e. The
gentle reader is invited to set @ = e and modify the denominator so as to find a series
that requires an even higher order of condensation to establish convergence.
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On Characterizations of the Gamma Function
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1. Introduction It is well known that the gamma function I'(x) >0 on (0,%)
satisfies the functional equation I'(x + 1) =xI'(x) and the initial condition I'(1) = 1.
However, these two properties do not characterize the gamma function. Rather
surprisingly, the additional assumption of the convexity of log I'(x) is sufficient for a
characterization, a fact discovered by Bohr and Mollerup [1]. For a proof, see Artin’s
book [4, 5] or Rudin’s book [6], or the last section of this paper. Note that the initial
condition in the characterization is not essential, for if f is a positive function on (0, »)
such that f(x + 1) =xf(x) then g(x)=f(1)"'f(x) is a positive function that satisfies
the same functional equation and g(1) = 1.

A second characterization formulated and proved by Laugwitz and Rodewald [2]
says that the convexity of log I'(x) can be replaced by the property, call it property
(L), that the function L(x) =log I'(x + 1) satisfies

L(n+x)=L(n) +xlog(n+1) +r,(x), wherer,(x)—>0asn-—>o0o. (L)

However, they did not show how this property is related to the convexity of log I'(x).
The original idea of the second characterization goes back to Euler [3].

In the present paper we give a third characterization of the gamma function and
then show how these three characterizations are related.

2. A third characterization In property (L), the use of logarithms is not essential
and without logarithms the expression on the right-hand side becomes a product
instead of a sum. We might therefore expect that a modified property (L) will give us
a characterization that is closer to the product expression of the gamma function. With
this in mind, we modify property (L) as follows: The gamma function satisfies the
following property

I'(x+n) =T(n)n"t,(x), wheret,(x)—1lasn— o,
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