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The integrals we consider are

fbx" dx for integers n # —1. @8
a
We show by a clever choice of the evaluation points in the partition intervals used to
define the Riemann sums for these integrals that we can arrange for these sums to
agree exactly with the value of the integral. Thus the integrals can be evaluated
without having to take limits. We also show how the inequalities used here lead to a
new definition of the natural logarithm that does not involve limits, series or integrals,
or even the exponential function.
A Riemann sum for the integral in (1) is
m
Youi(x—x_y) (2)
i=1
where (xg, x), x5,...%,) is an ordered partition of [a,b] and x,_; <u; <x, for
i=1,2,...m. For convenience we suppose that 0 <a <b, and that @ > 0 when n is
negative. Since the case n =0 is trivial, we assume that n#0, —1. Let u,=
M, (x;, x;_,), where M,(u,v) is defined for u,v> 0 by

M,(u,u)=u (3)
and

M,(u,v) =

un+1 _Un+l 1/n
(n+1)(u-0) ]

for u # v. If 0 < v <u then, as we show below, v < M, (u,v) <u and so x;,_, <u, <x;.
With this choice of u; we have

uf(x,—x,_,) = (xi"+1 _xfjll)/(” +1)
and so the Riemann sum (2) telescopes and has the value
(bn+l—£1"+1)/(7l+l). (4)

The mesh size max,;(x; —x,_,) may be made arbitrarily small, so, invoking the usual
theorems on the existence of the integral (see [1], for example) we see that the value
of the integral (1) must be the expression (4). For n negative we only need these
results for v > 0.

What makes the method work is the fact that each expression M, defined by (3) is
an average. We note in fact that M,(u,v) = (u +v)/2 and M _,(u,v) = (uv)"/? are
the arithmetic and geometric means respectively. For n a positive integer the
mean-value property of M, follows from the formula

Mn(U, U) = [(un +u"—lv+ +U")/(n + 1)]1/" (5)
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and the fact that the radicand is the arithmetic average of n+ 1 non-negative
numbers, all not equal, the largest of which is 4" and the smallest of which is v™.
Since we have ruled out n =0 or —1, and n = —2 is the easy case of the geometric
mean, we only have to consider n < —3 among the negative integers. Some easy
algebra shows that the inequality M_,(u, v) > v is equivalent to the inequality

1/(n—-2)
M, (2.1)<(% :
n—2 u v

and this follows from u/v>1 and the result already established that M,_, is an
average. The inequality M, (u,v) <u for n negative is proved similarly. Various
generalizations of the M, are discussed in [2].

When n = —1 in (1) this method seems incapable of giving an evaluation of the
integral (1) that does not depend on dealing with limits because of a lack of a suitable
elementary definition of the logarithm. Below we make it work by giving a new
definition of the logarithm. We note first that the usual tactic in this situation is to
define the logarithm by setting

u@=f%m. (6)

The functional equation of the logarithm, L(xy)= L(x)+ L(y), is then obtained
from this definition (see [3], p. 93, problems 3 and 4), and this functional equation is
easily transformed into Cauchy’s functional equation, f(x +y)=f(x)+f(y), by
introducing f(x) = L(a*), a > 1. From (6) the continuity of L follows as does the fact
that the monotone function L takes on every real value exactly once. From the form
of the continuous solutions of Cauchy’s functional equation (f(x) = cx) it follows that
L(x) =log, x, where e is defined by L(e) = 1.

We suggest another method of attack: We note that L defined by (6) must satisfy
the inequality

u-l< L(u)_L(U) <pl (7)
u—v
for all positive u and v, v <u. We assert that this inequality defines the logarithm up
to an additive constant. With the added condition L(1) =0, we make this our
definition of the logarithm. The unique solution of (7) is then L(x) = log, x (with e
now defined as usual).

We give two proofs of this. Our first proof depends on the calculus and runs as
follows (we omit the details): We show in succession that any solution of (7) is
necessarily strictly increasing, continuous, differentiable, and satisfies L(x)=x""1.
The assertion now follows. For a similar elementary definition of the exponential
function, see [4], part (a).

The following treatment of (7) is more in the spirit of this paper and depends only
on the existence of the integral. Let n = —1 in (1) and (2) and let u; in the Riemann

sum be defined by

wl= L(x;) —L(x;_1)

! X T X

>

where L is any solution of (7). By (7) x,_; <u, <x;, and the value of the Riemann
sum is L(b) — L(a). It follows as before that

um—u@=f%#
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Thus any solution of (7) together with L(1) = 0 is necessarily given by (6).
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A Note on Cauchy Sequences

JOSE A. FACENDA AGUIRRE'

Universidad de Sevilla
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In undergraduate courses we teach that a sequence of real numbers converges if, and
only if, it is a Cauchy sequence. Usually, the students have no problems with the
necessary condition. Our aim in this note is to clarify the sufficient condition with the
use of pairs of monotone sequences. The notation is standard; we follow [1].

First of all, we recall the notion of pairs of monotone sequences:

Let {a,),en and {b,},cn be sequences of real numbers. We say that
({a.}nen->{bo}nen) is a pair of monotone sequences if:

(1) {a,}, <y is nondecreasing and {b,}, <  is nonincreasing, and
@) a,<b, VneN.

n —

Plainly, a,< bq, for all p,q €N so there exist a =sup{a,:n € N}€R and b=
inf{b,: n€N} €R, and a <b.
When can we assure that @ = b? If the following condition is fulfilled:

Ve>03keN suchthat b, —q,<e, a=b. (%)

We recall the definition of limit superior and limit inferior of a bounded sequence
of real numbers. Let {x,}, .y € R be a bounded sequence. For each n € N define

yy=inf{x,: n >k} and z; =sup{x,: n=k}.

Let y =lim; ,, y, =sup{y;: k €N} and z =lim, ,, z; = inf{z;: kK € N}. The num-
bers y,z €R are called the limit inferior of {x,},cn and the limit superior of
{x,}, < respectively. (Note that ({y,}, <y, {2,}, ) is @ pair of monotone sequences).
Furthermore, we recall that every Cauchy sequence is bounded and a sequence of
real numbers is convergent if, and only if, the limits superior and inferior exist in R
and are equal.

With these remarks, we are ready. Suppose that {x,}, c y © R is a Cauchy sequence.
Since {x,}, <y is bounded, y =liminf x, € R, z =limsup x, € R. To show {x,}, <

converges, we only have to prove that y =z.
We know that

Ve>03keN suchthat Vm,n >k, |x, —x,|<e.
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