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Some Subtleties in L’Hopital’s Rule
Robert J. Bumcrot, Hofstra University, Hempstead, NY

The use of L’Hépital’s Rule (actually a theorem of Johann Bernoulli) to calculate
lim, o *—38X  for example, is almost always presented as a simple string of

X
equalities:
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Of course, the first three equalities are not justified until the last equality has been
reached. A more complete presentation would add, “if this limit exists” after the
second, third, and fourth limits (a limit of *+ oo is considered here to “exist”), and

cosx _ 1 Equation (3) holds; therefore
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Equation (2) holds; therefore Equation (1) holds; hence lim, _,, w = %.”
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the conclusion would be: “Since lim,_,,
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We do not advocate such a complete presentation for every example of
L’Hépital’s Rule, but we do suggest that students be made aware of the importance

f'()

of the existence hypothesis. Although the existence of lim, _,, W

x
2 % , very little is usually said about whether
x
or not this is a necessary condition for the existence of lim, _,, % Thus, it may
be enticing for students to believe that when a chain of “L’Hépital equalities” leads
to a limit that does notr exist, then the original limit also does not exist. The
following examples show that such a conclusion may or may not hold.

is a sufficient

condition for the existence of lim, _,

Example 1 (% indeterminate forms). If f(x) = x%sin(x ') and g(x) = sinx, then

f() f()

lim, ,,—— does not exist, whereas lim, ,,—— =0. On the other hand, if
g'(x) 8(x)

. . L f'(x) . f()

(x) = xsin(x ") and g(x)=sinx, then neither lim ,,~—— nor lim _,,——
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exists.

Example 2 (% indeterminate forms). If f(x)= x(2 + sinx) and g(x) = x2+1,

f'(® f()

then lim,_, does not exist, whereas lim,_, =0. On the other

8'(x) 8(x)
hand, if f(x)= x(2+sinx) and g(x)= x + 1, then neither lim__, % nor
lim,_, & exists.
g(x)

Editor’s Note: For a variation on this theme, see J. P. King’s Classroom Capsule “L’Hopital’s Rule and
the Continuity of the Derivative,” TYCMJ 10 (June 1979), 197-198.

o

An Analytic Approach to the Euler Line
Jonathan W, Lewin, Kennesaw College, Marietta, GA

In the November 1982 Classroom Capsules Column, Norman Schaumberger pre-
sented a demonstration of the Euler line using vector methods. It may be interesting
to supplement Schaumberger’s argument, which has a distinct geometric flavor,
with the following analytic approach.

For any triangle ABC, let G =+(A + B + C). Then G must lie on all three of the
triangle’s medians—that is, G is the centroid of triangle ABC,
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