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The Best Shape for a Tin Can*
P. L. Roe, Department of Aerospace Engineering, University of Michigan,
Ann Arbor, MI 48109-2140

Some time ago, I came across a book intended to popularize mathematics, whose
last chapter dealt with the calculus of one variable. Its final section, evidently
intended to climax the whole work, solved the problem of designing the propor-
tions of a tin can so as to obtain the greatest volume out of a given amount of
material. The well-known solution is of course that the material used is propor-
tional to

M=2mr*+2mrh, (1)
whereas the volume is
V=mr’h, (2)
so that
h= Lz (3)
Tr

*This article first appeared in The Mathematical Gazette, Vol. 75, 472 (1991) 147-150 and is
reprinted with the kind permission of The Mathematical Association.
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Inserting (3) into (1) and setting dM /dr = 0 gives

2V
dmr— — =0, (4)
or, in view of (2)
h=2r. (5

In other words, the most economical shape has its height equal to its diameter.
The authors then drew attention to the fact that most cans are not ‘square’ and
sought to explain the discrepancy. They concluded that tradition and design
fashion must count for more than rational thought in the commercial world. Their
parting message to the reader was to the effect that intellectual beauty was its own
reward.

Such a patrician view of mathematics is, these days, a luxury that few can afford.
The irony is that the chosen example, and the discrepancy between the mathemati-
cal model and the real world, actually illustrate rather nicely the true character
and value of applied mathematics.

Consider first that when the lid and base of the can are cut from sheet there
must be wastage, which is presumably returned for recycling, but has little value to
the can makers. If we suppose that the sheet is divided first into squares of sides
2r, and that one circle is cut from each square, equation (1) should be replaced by

M =8r%+2mrh, (6)
leading to
h 8
—=—=2.55. (7
r o

A better strategy (from a mathematical viewpoint, anyway) would be to divide
the sheet into a honeycomb of hexagons. Neglecting the waste at the edge of the
sheet, we find

B3 2.21. (8)

r T

Although this may be interesting, neither (7) nor (8) describe very well the usual
proportions of a can. We are still forgetting things. For example, examination of a
real tin can shows that the top and bottom are formed from discs somewhat larger
than r in radius, which are then shaped over the ends. Allowing for this would
increase (h/r), as would any extra costs associated with forming a lid, or making
the lid of thicker material. Also importantly, the cost of a can needs to include its
fabrication as well as its materials. If the most costly operation consists of joining
the side and two rims of the can, the total cost is proportional, with most
economical cutting, to

c=4/3r*+2mwrh +K(4wr+h), (9)
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where K is the length that can be joined for the price of buying unit area of
material (with this definition (9) is dimensionally consistent). Then repeating the
earlier maneuvers leads to

1% KV
4B3r— S +2mK-—=0 (10)
r mr

as the condition to be satisfied by an optimum design, together of course with (3).

Extracting the information from (10) requires some ingenuity. Dimensional
analysis suggests a relationship between (4 /r) and (V/K?) and indeed (10) will
yield it. After dividing by r, the terms are regrouped as

r r

1)2 2171{(1)2/3 KV(1)8/3
=(),
;

|4
43 —— =] + — - —
V3 r( 173 /3

and the terms in (1 /r) can be substituted by (wh /V )/, leading to

3 V(mh +2'rrK ah\'? KV (wh\*? 0
_r(V) r’/3(V) wr4/3(V) e
From this, finally,
wh K3 13 h\/3 h
(4@——)+( ) (—) (27——)=0. (11)
r 14 r r

This can be thought of as a quartic for (4 /r)!/3, with K3 /1 as a parameter, but
several things are immediately clear. First, if joining is cheap (K small) or the can
is large (V' large) then we have the original design (h/r = 43 /). In the opposite
cases where joining is expensive, or the can is small, we find A /r= 2. This
corresponds to manufacturing costs greatly exceeding material costs. Also, for any
other situation there is by Rolle’s theorem a value of (4 /r) between these limits
that satisfies (11).

A graph of the complete relationship (11) is easily made by inverting it to read

14 h\[ 2m—h/r 7°
K’ "( r)[qrh/r—4\/§] ’ (12)
which allows Figure 1 to be plotted.

The predicted trend, that big cans should be nearly square, whereas small cans
should be tall and thin, can be verified in a supermarket. Compare, for example,
cans of marmalade oranges with cans of cocktail olives. However there are cans
that do not fit the trend. Sometimes there is an explanation deriving from the
nature of the product (pineapple rings, for example). Very small cans are often
squarer than one would expect, perhaps for convenience of handling the tin
opener. Convenience would also be a consideration for any can designed to be
drunk from. i

To summarize, the failure of the original model to predict the real shape of a tin
can arises from its being a very naive model. More complete models, still within
the range of school mathematics, began to reveal the real issues. Without compli-
cating the analysis, many other questions could be explored. Would the argument
be affected if the sheet material is only available in standard sizes? Or if we knew
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how the can-making machine actually worked? Are we designing to a given
volume? Or to a given weight of contents? How are the cans stacked for transport?
How much does it cost to be slightly off the optimal proportions? Is this offset by
any other saving?

There is plenty of scope here for developing a true appreciation of how
mathematics contributes to technology.

The Curious 1 /3
James E. Duemmel, Western Washington University, Bellingham, WA 98225

The United States Postal Service will ~ccept for delivery only packages that
conform to this rule: tiie length plus the girth must not exceed 108 inches. This
rule generates a number of maximization problems in calculus texts [1, p. 260],
[2, p. 240], [3, p. 220]. The answers to these problems contain an interesting
surprise.

To generalize slightly we may replace 108 by any positive constant c¢. The typical
textbook problem asks for the maximum volume of a right cylindrical package
when the cross section of the package is a square or when it is a circle. The length
of the box of maximum volume is, in both cases, c¢/3.

In a recent class I asked the students to try using equilateral triangles for the
cross section. The length of the box of maximum volume was still ¢ /3. The reader
might want to try other shapes, perhaps an isosceles right triangle.

Is this just a strange coincidence? Or is the length of the box of maximum
volume actually independent of the shape of the cross section?

Suppose we decide on a (reasonable) shape for the cross section of the box.
Consider one example of that shape with perimeter P and area 4. We may use a
“magnification factor” x to describe all similar shapes, which will have perimeter
Px and area Ax2. (It should be easy to convince students of the existence of such a
magnification factor, at least in the case of figures that can be decomposed into a
finite number of triangles. For more complicated figures and more advanced
students an argument using line integrals for the perimeter and area should be
convincing.)

Let z be the length of the box. We seek the maximum volume V = Ax2z subject
to the restriction Px 4z =c. This constraint can be solved for x to yield V=
(A4/P)z(c—z)* for0<z<c.
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