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and observing that the first series of (2) converges, whereas the second series
diverges because 1/(n + (—1yVn) > 1/(2n) for each n > 2.

Hardy uses this example to emphasize the need for a, to be strictly decreasing
to zero as part of the hypothesis for the convergence of an alternating series

% _(=1)"a,. But this same example can also be used as a counterexample to the
extension of the comparison test to alternating series. Indeed, Hardy’s divergent
series (1) is “dominated” by the convergent alternating series

& Y
n§=:2 \/;—1 '

as 1/(Yn + (=1)") < 1/(yn — 1) for all n. Thus, there is no “comparison test” for
alternating series.

An example such as this should be presented to all students who study infinite
series. Other such illustrations can also be presented—as, for example,

d (- 1"
i n(2+ (= 1)7) ’

a divergent alternating series that is dominated by the alternating harmonic series.

Editor’s Note: Readers who are interested in this theme may want to refer to R. Lariviere’s article “On
a Convergence Test for Alternating Series,” Mathematics Magazine 29 (November-December 1955) 88.

o

A Note on Differentiation
Russell Euler, Northwest Missouri State University, Maryville, MO

The following technique illustrates an alternate method for deriving the product rule
for differentiation.
If f(x) is a differentiable function of x, then

Fx+h) = f4(%)
h

[fz(x)]’ = lim

h—0

o LGB+ PN+ 1)~ f0)]

h—0 h

=2f(x) f'(%)- (*)
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Now, for differentiable functions f and g, the identity
J(x)8(x) = ([ f(x) + &))" = f(x) =~ £())
and (*) give
[f(0)g(x)] =3[ f(x) + () ][ £ (%) + g'(x) ] = 2f(0)f (%) — 2g(x)g' (%)),
which simplifies to
[f()g(x)] = f(x)g'(x) + g(x) f (%)-

Editor’s Note: Once students know that the quotient of differentiable functions is a differentiable
function, they may appreciate Marie Agnesi’s 1748 proof of the quotient rule: If A = f/g, then hg = f
and (by the product rule) hg’ + h’g = f; it remains only to substitute f/ g for & and solve for A'".

o

Angling for Pythagorean Triples
Dan Kalman, Augustana College, Sioux Falls, SD

Here is a simple procedure that begins with any proper fraction and produces a
Pythagorean triple. To illustrate, begin with a right triangle having an angle § whose
tangent is the given fraction—say 2 /3. Then construct another right triangle using
20 as one angle. Since tan2 = 2tanf /(1 — tan’d) = 12/5, we may label the legs of
the new triangle 12 and 5. The hypotenuse is 13, and (5, 12, 13) is a Pythagorean
triple.

We shall see that this procedure always produces Pythagorean triples, and that
any Pythagorean triple can be so obtained. Note that the generated triangle
depends upon the fraction chosen to express tan 26. If, in the example above, tan26
had been expressed as 24 /10, the triple (10,24,26) would have resulted. Indeed, for
any c the triple (5¢,12¢,13¢) may be obtained by expressing tan26 as 5¢/12c.
Thus, we are actually producing an acute angle, 26, and one representative of a
class of similar triangles, rather than a specific Pythagorean triple. For convenience,
let us call an acute angle ¢ a Pythagorean angle if there is an integer-sided right
triangle having ¢ as an angle. (Or, in what amounts to the same thing, ¢ is
Pythagorean if sin¢ and cos¢ are both rational.) Our procedure may thus be
viewed as an algorithm for constructing Pythagorean angles. In particular, we shall
prove:

An acute angle 20 is Pythagorean if and only if tan is rational.

If 260 is Pythagorean, then sin26 and cos26 are rational. Consequently, tan @
= (1 —cos28)/sin28 is also rational. Conversely, assume that tanf = u/v for
positive integers u < v. Then tan26 = 2uv/(v> — u?), and the right triangle with
legs v> — u? and 2uv has hypotenuse u?> + v2. Thus, 20 is Pythagorean.
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