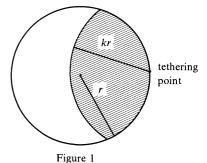
Return of the Grazing Goat in n Dimensions

Mark D. Meyerson, U.S. Naval Academy, Annapolis, MD

We return to the problem of the grazing goat considered by Marshall Fraser in CMJ 15 (March 1984) 126–134:

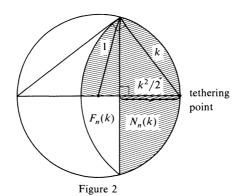
A goat is tethered to the edge of a disc shaped field of radius r. The goat's rope is of length kr. If the field is n-dimensional, what fraction of it can the goat reach, and what happens as n approaches infinity?

Our objective here is twofold: (a) To describe what happens to the proportion of the field which the goat can reach as n increases, where k is arbitrary but fixed; (b) to give a correct proof, in place of Fraser's incorrect one that if k_n is the tether length for the goat to reach half the field in dimension n, then $\lim_{n\to\infty} k_n = \sqrt{2}$. In fact, we establish



Theorem 1. Suppose the goat's tether is a fixed proportion k of the n-disc radius. As n approaches infinity, the proportion of the volume which the goat can reach approaches zero if $k < \sqrt{2}$, one half if $k = \sqrt{2}$, and one if $k > \sqrt{2}$.

The Grazing Goat with Fixed Tether Length. Since all the following will only refer to proportions, we can simplify by using unit discs for fields (i.e., r = 1). We shall thus write V_n for $V_n(1)$, the *n*-dimensional volume of an *n*-dimensional disc of radius 1. The region which the tethered goat can reach divides into two segments as drawn: the segment nearer to the tethering point, with volume $N_n(k)$, and the farther segment with volume $F_n(k)$. By similar triangles, we calculate the length $k^2/2$ as indicated.



Now fix $k(0 \le k \le 2)$, and consider what happens to the proportion of the total volume which is in each segment. First we consider the nearer segment. Since

$$N_n(k) = \int_{1-k^2/2}^1 V_{n-1}(\sqrt{1-x^2}) dx = V_{n-1} \int_{1-k^2/2}^1 (1-x^2)^{(n-1)/2} dx,$$

we let $x = \sin \theta$ to get

$$N_n(k) = V_{n-1} \int_{\alpha}^{\pi/2} \cos^n \theta \, d\theta,$$

where $\sin \alpha = 1 - k^2/2$.

If $0 \le k < \sqrt{2}$, then $0 < \alpha \le \pi/2$ and we choose β with $0 < \beta < \alpha$. Hence,

$$N_n(k)/V_n = \int_{\alpha}^{\pi/2} \cos^n\theta \, d\theta / \left(2 \int_0^{\pi/2} \cos^2\theta \, d\theta\right) < (\pi/2) \cos^n\alpha / (2\beta \cos^n\beta)$$
$$= (\cos\alpha/\cos\beta)^n \pi / (4\beta) \to 0.$$

If $k = \sqrt{2}$, then $\alpha = 0$ and $N_n(k)/V_n = 1/2$ for all n. If $\sqrt{2} < k \le 2$, then the part of the n-disc not covered by the nearer segment is the type of segment considered in Case 1, with a volume of $N_n'(k)$. So $N_n(k)/V_n = 1 - N_n'(k)/V_n \to 1$. For the farther segment, we shall now show that $F_n(k)/V_n \to 0$ for all k.

If $k \neq \sqrt{2}$, then $F_n(k)/V_n \int_{k^2/2}^k V_{n-1}(\sqrt{k^2-x^2}) dx/V_n$. Using $x = k \sin \theta$, this becomes

$$k^n \int_{\alpha}^{\pi/2} \cos^n \theta \, d\theta / \left(2 \int_{0}^{\pi/2} \cos^n \theta \, d\theta\right),$$

where $\sin \alpha = k/2$. Note that $0 \le k^2 - k^4/4 < 1$ for this k (since the polynomial achieves its maximum of 1 at $\pm \sqrt{2}$). So there is a β with $0 < \beta < \pi/2$ and $\cos \beta > \sqrt{k^2(1-k^2/4)}$. Now $\cos \alpha = \sqrt{1-k^2/4}$; so

$$F_n(k)/V_n < (\pi/2)k^n \cos^n \alpha/(2\beta \cos^n \beta) = \left(\sqrt{k^2(1-k^2/4)}/\cos \beta\right)^n \pi/(4\beta) \to 0.$$

For the case where $k = \sqrt{2}$, we consider a cone-shaped region containing the far segment (see Figure 3).

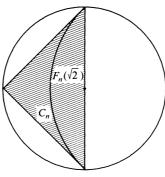


Figure 3

This region has volume

$$C_n = \int_0^1 V_{n-1}(x) dx = V_{n-1} \int_0^1 x^{n-1} dx = V_{n-1}/n.$$

Thus $V_n/C_n = 2n \int_0^{\pi/2} \cos^n \theta \, d\theta$. Integrating by parts, we get

$$\int_0^{\pi/2} \cos^n \theta \, d\theta = \cos^{n-1} \theta \sin \theta \, |_0^{\pi/2} + (n-1) \int_0^{\pi/2} \cos^{n-2} \theta \sin^2 \theta \, d\theta$$
$$= (n-1) \int_0^{\pi/2} \cos^{n-2} \theta \, d\theta - (n-1) \int_0^{\pi/2} \cos^n \theta \, d\theta.$$

It follows that

$$V_n/C_n = 2n(n-1)/n \int_0^{\pi/2} \cos^{n-2}\theta \, d\theta = (n-1)/(n-2)(V_{n-2}/C_{n-2}).$$

Now let $a_n = \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \cdots \cdot (2n-1)/2n$ and $b_n = \frac{2}{3} \cdot \frac{4}{5} \cdot \frac{6}{7} \cdot \cdots \cdot 2n/(2n+1)$. Then $C_n/V_n = b_{(n-2)/2}(C_2/V_2)$ for even n (n > 2), and $C_n/V_n = a_{(n-1)/2}(C_1/V_1)$ for odd n. Since a_n and b_n are positive and decreasing, they converge to some a and b, respectively. Since $a_n b_n = 1/(2n+1) \rightarrow 0$, and $a_n b_n \rightarrow ab$, we must have a or b equal to b. But b0 and b1 so b2 and b3 so b4 so b5. Thus, b6 so b7 so b8 so b9 so b9 so b9.

The Grazing Goat Fallacy. For $0 \le k \le 2$, let $g_n(k)$ be the proportion of the unit n-disc which our goat can reach with a tether of length k. Thus, as n increases, $g_n(k) = (N_n(k) + F_n(k))/V_n$ converges to 0, 1/2, or 1 depending on whether $k < \sqrt{2}$, $k = \sqrt{2}$, or $k > \sqrt{2}$, respectively.

In Fraser's article, an incorrect proof is given of the true statement that the values k_n such that $g_n(k_n)=1/2$ approach $\sqrt{2}$ as n increases. The fallacious part of the proof is that $g_n(\sqrt{2}) \to 1/2$ and $g_n(k_n)=1/2$ imply that $k_n \to \sqrt{2}$. To see that the above claim is insufficient, suppose $g_n(x)=x/n+1/2$. Then $k_n=0$ for all n since $g_n(0)=1/2$. And $g_n(\sqrt{2})\to 1/2$. But certainly $k_n \to \sqrt{2}$. The difficulty is that more information is needed about g_n . This is just what has been provided, however, by Theorem 1. So we can now conclude with the following.

Theorem 2. If the goat can reach a fixed proportion p (0 of each unit <math>n-disc, then the length of the tether converges to $\sqrt{2}$ as the dimension increases.

Proof. For each n, since g_n is strictly increasing from 0 to 1, there is a unique k_n with $g_n(k_n) = p$. Now given any ϵ $(0 < \epsilon < 1/2)$, we have $g_n(\sqrt{2} - \epsilon) \to 0$ and $g_n(\sqrt{2} + \epsilon) \to 1$. Thus, there is an N such that $|k_n - \sqrt{2}| < \epsilon$ for $n \ge N$. Therefore, $k_n \to \sqrt{2}$.

Editor's Note: A number of readers were kind enough to write that $V_5(1)$ is the largest volume of the unit n-discs, not $V_6(1)$ as stated in the original article.
