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Pseudorandom number generators can be introduced easily in the context of a
four-bit computer system that allows students to explore and understand their
properties. At the university we do this in a freshman-level mathematics course
required of computer science majors that introduces logic, numeration, matrices,
combinatorics, probability, and series. After considering arithmetic in bases 2, 8, 10,
and 16 (including subtraction by complements), we introduce a simple four-bit
computer system, show it behaves “just like” arithmetic modulo 16, and introduce
pseudo-random number generators modulo 16.

First, we consider a four-bit computer system that uses binary representation for
positive integers, and two’s complements for negative integers. Here are the possible
numbers with the corresponding decimal numbers they represent:

0000:0 0100:4 1000: —8 1100: —4
0001:1 0101:5 1001: -7 1101: -3
0010:2 0110:6 1010: -6 1110: -2
0011:3 0111:7 1011: -5 1111: -1

Next, we introduce equivalence classes of integers modulo 16 and arithmetic
modulo 16. Students can convince themselves that addition modulo 16, with 0 to 15
as the representative elements for the equivalence classes, is “just like” addition in
the four-bit computer system. We also discuss briefly the idea of isomorphism and
its uses.

Then, we introduce some examples of pseudorandom number generators for the
integers modulo 16. Start by letting L, be any number (called the “seed”) between 0
and 15, and set

L,=5L,_;+ 3 (mod 16).
The seed L, =1 generates:
8,11,10,5,12,15,14,9,0,3,2,13,4,7,6,1,8,...,

which looks like a random ordering of the numbers (mod 16). Of course, it repeats
once the seed is generated.

Students are then asked to explore several other examples. In each case, they
choose a “seed” and determine L; for i =1 to 16. Would any of these be “suitable”
pseudorandom generators mod 16?

(a) L= 2 L, ,+5 (mod 16)
(b) L,= 3L, , +1(mod 16)
(©) L,= 7L, , +5 (mod 16)

(d) L,=15 L, , +4 (mod 16)

1

() L;= 9L, , +3(mod 16)

1

In case (a), once 11 is generated, it is repeated indefinitely. The lengths of
non-repeating sequences in cases (b), (c), and (d) are 8, 4, and 2, respectively. Case
(e) is a “suitable” pseudorandom number generator.

Finally, students can explore the linear congruential pseudorandom number
generator

Li=aL,_;+b (mod16)
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for arbitrary a and b. A special case of Theorem 1 in S. J. Yakowitz’s Computational
Probability and Simulation [Addison-Wesley, 1977] shows that all 16 different
numbers will be generated if and only if b is relatively prime to 16, and a— 1 is a
multiple of 4. With some guidance, students can discover this, as well as the fact
that one number is repeated indefinitely in the sequence when a — 1 is odd.

These student explorations can be used as the basis for discussing the “suitabil-
ity” of pseudorandom number generators in real computers. In order for

Li=aL,_ ,+b (mod K)

to be “suitable,” choose a and b so that K different numbers are generated. We
would want the numbers in the sequence to be “uniformly distributed.” For
example, the number of the first » elements in the sequence less than or equal to n
should approximate n/K. Moreover, the numbers in the sequence should be
“independent.” For example, the number of “runs up” should be comparable to a
theoretical distribution. Students who explore pseudorandom number generators
modulo 16 should be able to more easily understand the related ideas in later
courses.

Conditional Expectations and the Correlation Function
Barthel W. Huff, Randolph-Macon College, Ashland, VA

If the random variables X and Y have joint density
fxv(x,y)=x+y for0<x<landO<y<]l,
then it is easily computed that .
Cov(X,Y)
JVar(X) - Var(Y)
E(XY)—E(X)-E(Y) 1
B JVar(X) - Var(Y) BT

p(X,Y)=

This appears as Example 22 on p. 156 of Mood, Graybill, and Boes’ Introduction to
the Theory of Statistics, 3rd edition, McGraw-Hill, 1974, where the authors conclude
by asking if a negative correlation seems “right.” In Example 24 on p. 158 of that
volume, it is calculated that

3x+2
E(Y|X=x)=—— for0<x<1,

6x +3
but there is no indication that this might be related to the earlier question. Since
d E(YIX d (3x+2 -3
J— = _ — - <
dx (] x) dx(6x+3) (6x+3)2 ’

the conditional expectation is a decreasing function of x, and the observer might
conclude that Y is expected to give smaller values as the value of X increases; that
is, conclude that X and Y are tending in opposite directions and therefore should
have a negative correlation.

In view of the above, we prove the following.
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