I claim that the simplifying assumption here is made too early in the procedure,
for to most students it is completely unmotivated at this point. In fact, often, the
only reason given for the simplifying assumption is that it reduces the amount of
work required in determining yg(x); unfortunately, this leaves many students
wondering why none of the other terms was chosen to be zero instead, for that
would just as well make evaluating y;(x) easier.

I propose that, rather than making the simplifying assumption at this stage, it is
far better to labor through evaluating yZ(x) in all its goriness. For doing so gives
(after some rearrangement)

f=y,+py,+ay,
=c, [y +pyi +ay,] +col ¥+ pyh +ay,]
+cly ey +chy, Hehyy+ iy +chys ] +plely, +¢hy,]

= [y, +ciyi] + [chy, +chys ] +plciy, +chy,]
+[ iy +chyh]

d d :
=2 (ciy) + - (chy) +p[chy, +chy ]+ [chy) +chyh]

d
= E[C'lyl +chy ] +plely +chy, ]+ [y +ehys].

Now, at this point, making the assumption that ¢}y, +c5y, =0 is well moti-
vated, for it eliminates almost all the terms in the last line and yields the system

1y + ¢y, =0
ity =f

in one fell swoop!

Teaching the Laplace Transform Using Diagrams
V. Ngo, California State University, Long Beach, CA 90040, and S. Ouzomgi, The
Pennsylvania State University, Abington, PA 19001

In this capsule, we present an approach to evaluating the Laplace transform and
its inverse using commutative diagrams. The value of this technique is twofold.
First, it presents a visual approach to a symbolic process. Second, it introduces the
concept of commutative diagrams, which embody the important idea of distinct
processes producing identical results.

The Laplace transform of a function f(¢) (¢ > 0) is defined by

F(s) =A{f(0) = [ e™f (1) de

for all values s for which the integral is defined. We write f(¢) =.Z"{F(s)} and
call f(¢) the inverse Laplace transform of F(s). If a is a real constant and 7 is a
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positive integer, we have

n!
e }=s—a (s>a) =./{t)=SnJrl (s>0)
L{sinat) = e (s>0)  L{cosat)= Fp (s>0).

The following theorem can be found in standard differential equations texts.

Theorem 1. Let f(t) be a function with Laplace transform F(s). Then the Laplace
transform of the function [[f(7)dt is (1/s)F(s).

This theorem is illustrated by the following diagram.

f(t) F(s)

¢ 1
fo f(r)dr ~F(s)

This diagram indicates that integrating f(z) corresponds to dividing its Laplace
transform by s.

Calculation of Laplace transforms and their inverses may be illustrated in a
similar way.

Example. Find the inverse Laplace transform of 1/(s%(s — 1)).

Solution. We see that 1/(s*(s —1)) can be obtained from 1/(s— 1), whose
inverse Laplace transform is e’, by dividing by s twice. We draw the corresponding
diagram, filling in the appropriate inverse transforms. The answer is in the lower
left corner.

e' !
s—1
ft’d =e'—1 L
oe = S(S—l)
ft(ef—l)d7= e'—t—1 !
0 s (s—1)

Other properties can be illustrated in the same manner.

Theorem 2. Let f(t) be a function with Laplace transform F(s). Then the Laplace
transform of the function tf(t) is —F'(s).

f(t) F(s)

if (1) —F'(s)
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This diagram indicates that multiplying f(¢) by ¢ corresponds to differentiating its
Laplace transform and multiplying by —1.

Example. Find the inverse Laplace transform f(¢) of In(s?/(s? + 1)).

Solution. We construct the following diagram

2

f(1) ln(sz+1) =2Ins—In(s*+1)
tf(t) 2+2 2 25
=— ost - —+
cos s ost+1

2cost—2

from which we see that #f(¢) = —2+2cos ¢ and so | f(¢t) = ;

Two other important properties of the Laplace transform can be illustrated by
the self-explanatory diagrams

f(1) F(s) f(t) F(s)

e“f(1) F(s—a)  u(0)f(t—a) ¢ F(s)

1 t>a

where u (1) = {_0 ‘<a

Example. Find the Laplace transform of [jue" cos udu.

Solution. We obtain the answer in the lower right hand corner of the following
diagram.

s
t
cos 2+ 1
s2—1
tcost 5
(s*+1)
(s—1)>-1 s*—2s
te' cos t 7= 5
[(s-1)?+1]" (-25+2)
t s—2
fue“cosudu 5
0 (s*—2s5+2)
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We have found this diagrammatic approach very effective in enforcing the
concept of the Laplace transform and its properties, while also providing a visual
way of keeping track of the processes used in calculations.

Reference

R. V. Churchill, Operational Mathematics, 3rd ed., McGraw Hill, New York, 1972.

A Serendipitous Application of the Pythagorean Triplets
Susan Forman, Bronx Community College/CUNY, Bronx, NY 10453

On occasion, a purely pedagogical consideration leads to an interesting mathemati-
cal result. To determine whether students had a good grasp of the process of
factoring monic quadratic polynomials, I asked them to factor pairs of the form

(x2+px+q,x*+px—q), p,q+0 (1)

where each polynomial has integer zeros. Examples are:

@ . (x%+5x+6,x*2+5x—6)
(ii) (x2+413x + 30, x>+ 13x — 30)
(iii) (x24 17x + 60, x% + 17x — 60).

The natural question arose as to whether it is possible to produce all such pairs
of polynomials. As we will see, the answer is yes.

We begin with the observation that once a pair of the desired polynomials is
known, an infinite number of pairs can be generated from it; for if the polynomials
in (1) have integer zeros, so do (x2 + tpx + t2q, x* + tpx — t*q) for each integer t.
We are merely producing polynomials whose zeros have been multiplied by ¢. This
motivates the following definitions:

Definitions. A pair of polynomials of the form described in (1) is an integer
quadratic polynomial pair if each polynomial has integer zeros. If the polynomials
in (1) satisfy the additional requirement that (p,q) = 1, then the polynomials will
be called a representative pair.

It is readily seen that if #|(p,q) and (x> +px +¢q, x>+ px —q) is an integer
quadratic polynomial pair, then (x?+ (p/t)x +q/t?, x*+(p/t)x —q/t?) is also
such a pair. It follows that each integer quadratic polynomial pair can be derived
from a representative pair and therefore, it suffices to produce all representative
pairs. To this end, we prove the following theorem.

312 THE COLLEGE MATHEMATICS JOURNAL



