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how the can-making machine actually worked? Are we designing to a given
volume? Or to a given weight of contents? How are the cans stacked for transport?
How much does it cost to be slightly off the optimal proportions? Is this offset by
any other saving?

There is plenty of scope here for developing a true appreciation of how
mathematics contributes to technology.

The Curious 1 /3
James E. Duemmel, Western Washington University, Bellingham, WA 98225

The United States Postal Service will ~ccept for delivery only packages that
conform to this rule: tiie length plus the girth must not exceed 108 inches. This
rule generates a number of maximization problems in calculus texts [1, p. 260],
[2, p. 240], [3, p. 220]. The answers to these problems contain an interesting
surprise.

To generalize slightly we may replace 108 by any positive constant c¢. The typical
textbook problem asks for the maximum volume of a right cylindrical package
when the cross section of the package is a square or when it is a circle. The length
of the box of maximum volume is, in both cases, c/3.

In a recent class I asked the students to try using equilateral triangles for the
cross section. The length of the box of maximum volume was still ¢/3. The reader
might want to try other shapes, perhaps an isosceles right triangle.

Is this just a strange coincidence? Or is the length of the box of maximum
volume actually independent of the shape of the cross section?

Suppose we decide on a (reasonable) shape for the cross section of the box.
Consider one example of that shape with perimeter P and area 4. We may use a
“magnification factor” x to describe all similar shapes, which will have perimeter
Px and area Ax2. (It should be easy to convince students of the existence of such a
magnification factor, at least in the case of figures that can be decomposed into a
finite number of triangles. For more complicated figures and more advanced
students an argument using line integrals for the perimeter and area should be
convincing.)

Let z be the length of the box. We seek the maximum volume V = Ax2z subject
to the restriction Px + z =c. This constraint can be solved for x to yield V=
(A4/PHz(c—z)* for0<z<c.
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The maximizing z is clearly independent of the shape and always c /3. However,
the maximum volume (44 /P*)c/3)* does depend on the shape through the ratio
44 /P?. Indeed, the appearance of the isoperimetric ratio 44 /P? in the solution
clarifies the situation and opens up a whole new avenue for classroom discussion.

Note that two-thirds of c¢ is left for the perimeter of the cross section so that
maximum dimension of the cross section cannot exceed c/3, one-half of the
perimeter. The largest dimension of the box is indeed what we have called the
length.

One last question. What is the “correct” generalization to other dimensions?
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What is the Biggest Rectangle You Can Put Inside a Given Triangle?
Lester H. Lange, 308 Escalona Drive, Capitola, CA 95010

The purpose of this note is to put together an instructive package of pleasant
established theorems dealing with certain maximum rectangles inside triangles and
several other results of this flavor.

The following familiar old calculus book problem is dealt with in [1], [3], [5], [6],
and [7] in one form or another: Given a triangle of altitude a and base b, find the
dimensions of the rectangle of maximum area that can be inscribed in this triangle
with one side along the base. (In many old books the triangle is a right triangle.)

We first remind ourselves of a solution of this problem. See Figure 1, where the
two essentially different cases are shown; in (i) but not in (ii), the vertex C is
“above” the base.

Starting with (i) in Figure 1, we seek the maximum of the product xy, where, from
similar triangles, we have y =(b/a)(a —x). Thus, xy = (b/a)x)a —x), and we
need to find x so that this is maximized. We need not use a derivative; we can
complete the square to observe that x(a —x) = (a/2)* — {x — (a/2)}?, and this is a

\

() (ii)
Figure 1
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