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Rotation Matrices in the Plane without Trigonometry
Arnold J. Insel, Illinois State University, Normal, IL 61761

For a fixed angle 6, the rotation matrix

cosf® —sinf
sin 6 cos 6

induces a rotation of the plane by the angle 6 about the origin. That is, for any
column vector (2 X 1 matrix) v in R?, the product of this matrix with v is the
rotation of v by the angle # about the origin. Ordinarily, this rotation property is
established by a trigonometric argument that relies on the angle addition formulas
for the sine and cosine functions. For example see [C. H. Edwards, Jr. and D. E.
Penney, Calculus and Analytic Geometry, 3rd ed., Prentice Hall, Englewood Cliffs,
NJ, 1990, p. 491). In this capsule we reverse the procedure. We provide a simple
and direct justification of the rotation property of rotation matrices that is virtually
free of trigonometric arguments, and we then use our results to derive these
trigonometric identities.

The rotation operator. We begin with the mapping on R? that rotates a vector by
a fixed angle # about the origin so that the rotation is counter-clockwise if 6 is
positive, and the origin is fixed under the rotation. Let us denote this mapping by
T,. We argue that T, is linear, and then show that its matrix representation with
respect to the standard ordered basis for R? is the rotation matrix given above.
This establishes the rotation property for this matrix. Finally, we use the rotation
property to derive the desired trigonometric identities.

In what follows we list certain basic geometric properties about 7, that are
inherent in the idea of rotation:

1. The rotation of a vector by the angle o followed by the rotation by the angle
B is equivalent to the rotation of the vector by a + B. Symbolically: T,T, =
T, 5=Ts,, =TT}

2. The angle of intersection of two vectors is preserved under any rotation.
3. The length of a vector is preserved under any rotation.

To show that 7 is linear, consider any two nonzero vectors v and w in R2. We
may think of v and w as adjacent sides of a parallelogram intersecting at the origin.
Then v + w is the diagonal of this parallelogram with the origin as an endpoint.
The rotated vectors T,(v) and Ty(w) are now adjacent sides of a new (rotated)
parallelogram. See the figures below. One can now argue that the rotated diagonal,
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T,(v +w), is a diagonal of this new parallelogram. The argument can be based on
purely geometric grounds using (2) and (3) of the basic geometric properties of
rotations listed above and facts about congruent figures. We omit the details.

T,(v+w)
v+w

To(v)

v To(w)

Consequently, the rotation of the diagonal of the old parallelogram is the same
as the diagonal of the new parallelogram. That is,

T,(v+w) = To(v) + To(w).

Trivially, if v or w or both are zero, then we also have this additive property of T,.
So we have the additive property of T, for any vectors v and w. The multiplicative
property of 7, can also be justified by a geometric argument using properties (2)
and (3). We omit the details. With these two properties we have that 7, is linear.

r[i] w0 e[l

be the standard vectors of R? and let 4, be the matrix representation of T, with
respect to the ordered basis {e,, e,}. Recall that the columns of A4, are Ty(e;) and
T,(e,), respectively. The elementary theory of linear algebra tells us that Ty(v) = A4,v
for any vector v in R2. Our task, therefore, is to show that A4, is the rotation matrix
mentioned in the introduction.

We begin with the special case that §=m/2. Clearly, T, (e;)=e, and
T, ,»(e,) = —e,. Hence

The rotation matrix. Let

0 -1
A’TT/2=[1 0].

Now let 6 be any angle. Then T,(e,) = [Cf’s"] by the definitions of cosine and

sin 6
sine. To find Tj(e,) observe that e, is the rotation of e, by 7/2, and hence

Ty(e,) = TGTTF/Z(el)
=T, ,,T,(e;) (by property 1 of rotations)

_ 0 —1]||cosf
1 0|fsin6
_ —sin @
cosf |
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It follows, therefore, that

_ [cose —sin 6
o sin 6 cosf |’

which is the rotation matrix mentioned in the introduction. So we have established
the rotation property of rotation matrices.

Trigonometric consequences. Now that we have the desired rotation property we
can use it to derive the familiar angle addition formulas for the sine and cosine
functions.

Theorem. cos(a + B)=cosacosB —sinasinB and sin(a + B) =sin acosB +
cos a sin 3.

sin 8

Proof. Letv= [“’SB ] Then Ay is the result of rotating v by «, and therefore

o

_|cos(a+B)
| sin(e +B)

Furthermore,

cosa —sina]|cosB
Ay=|". .

sin « cosa || sinf

cos a cos B — sin a sin B

sinacos B+cosasinfB |’

Thus

cos(a +B)
sin(a + B)

cos & cos B — sin a sin 3
" |sinacos B+ cosasinB |

By comparing the corresponding components of the vectors in this last equation we
have the desired results.

A Geometric Interpretation of the Columns of the (Pseudo)inverse of A
Melvin J. Maron, University of Louisville, KY 40292 and Ghansham M. Manwani,
Universidade do Amazonas, Brazil

This capsule describes how the columns of the (pseudo)inverse of a matrix 4 can
be used to provide useful geometric information about the rows of A4. Specifically,
it shows how the ith column of the (pseudo)inverse of 4 can be used to project the
ith row of A on the span of the other rows (see Figure 1). We begin with an
elementary proof of the important special case for which the row space of 4 spans
all of Euclidean n-space E,.
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