Q . Figure 1

Consider an arbitrary partition of [a, b]. Summing the inequalities (1) as [u, v] ranges
over the subintervals of the partition, we find that L% is bounded below by the
lower sum for the function y/1+ f’2 and is bounded above by the upper sum for
this function. Since the partition was arbitrary, it follows that LY lies between all
lower sums and all upper sums for 4/1+ f’2. But the unique number with this
property is the integral. Therefore,

b
LZ:/ V14 f2dx. (2)

It is worth pointing out that in the presence of additivity of arc length, the integral
formula (2) is in fact equivalent to Axiom L. We have just derived the formula from
the axiom. Conversely, under the hypotheses of Axiom L the formula immediately
implies the axiom’s conclusion.

It is also interesting to observe how simply Axiom L implies the known fact that
the perimeter of a circumscribed polygon is an upper bound for the circumference of
a circle. Consider the arc of the circle between two consecutive points of tangency,
A and B. Position the coordinate axes with A and B on the z-axis, let P be the vertex
of the polygon, and let Q be the midpoint of the arc, as in Figure 1. By axiom L, AP
is longer than AQ and PB is longer than QB. Hence AP + PB is longer than the arc
AQB, which implies the result.
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The Buckled Rail: Three Formulations
James E. Mann, Jr. (james.e.mann@wheaton.edu), Wheaton College, Wheaton, IL
60187

Calculating the shape of a steel rail that has elongated by expansion is likely to yield
some surprising results for students. Let’s consider a rail that is one mile long and
is hinged at each end. Now suppose that we extend its length by one inch while
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Figure 1. Left to right: The buckled shape is a triangle, an arc of a circle, or
sinusoidal.

keeping the ends fixed, so that the rail buckles upward. Think what it might look
like: Is the center raised just enough to slip a piece of paper under? Is it tall enough
to walk under? Or is it so high that you could drive a tractor-trailer through?

In exploring this situation, we shall make three separate assumptions about the
buckled shape, to yield three separate problems whose solutions have their own
distinct surprises. The assumptions are:

1. The rail is hinged in the middle, so the buckled shape is a triangle.
2. The shape is an arc of a circle.
3. The shape is sinusoidal.

These alternatives are shown in Figure 1. The techniques for solving this progression
of models move from the simple to the rather sophisticated.

Hinged rail. The height of the center is easily found, using the Pythagorean theo-
rem, to be h = /(L + A)2 — L2 = v2LA[1 + O(A/L))]. For L = 0.5 mile = 31,680
inches and A = 0.5 inch, we find h = 178 inches or 14.8 feet. A rather dramatic
facet of this result is that with A fixed, h — oo as L — oo.

Circular arc. Many students find the second model much more difficult than the
first, because they have never had to formulate a problem whose solution requires
solving a transcendental equation. From the relations

0= ﬂ and sinf = £,
T r
we obtain

We cannot get a closed-form solution for 6 from (1). Moreover, because L/(L + A)
is so close to 1 for our values, it is a little difficult to find a numerical solution to the
equation. If we note that § is very small, we may approximate sin § ~ 6 — /3! and

find
1/2
o~ (82 ) 2)
L+A

The central diagram in Figure 1 shows us that

L(1 — cosf)
sinf

B =
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From (3) and the approximations for sine and cosine, we find

L L 6A
h~s30~\Tsa )

For the values of L and A in our example, we find h = 154 inches.

Sinusoidal shape. Within the assumptions of elementary beam theory, the true
shape of a buckled beam is a sine function (or a cosine if the origin is located at
the center). [See S. Timoshenko, Strength of Materials, part I, 3rd ed., Van Nostrand,
New York, 1955, pp. 258 ff.] Therefore, this model is the most realistic of the three. It
is also the most difficult for students to formulate and solve. We will use the formula
for arc length f_LL V14 y?dx = 2L+ 2A.

Taking y = hcos[rz/(2L)], we obtain an equation for h:

L hm 2 s Yz
1+ (—) sin? <—x> dx = 2L + 2A. 5
/_L 2L 2L (5)

Setting x = 2Lt/ and k = [hr/(2L)])?, then using the symmetry of the integral, we
obtain

/2 LA
/0 (1 + ksin2t)""? dt=%. (6)

To solve (6) for k, we expand the integrand in a power series in k and integrate
term by term:

(1 + ksin® t)1/2 =1+ %ksinQ t+O(k?).

4A
When we insert this series into (6) and drop terms of O(k?), we find k ~ I But

2

k= (2—L)—§h2; therefore,

h~ 2VIA, (7)
™
For this shape, we find h ~ 160 in.

Before my students try to solve these problems, I ask them to guess which model
will yield the highest value for the center of the rail. Most can immediately see that
the triangle will be the highest, but there is usually disagreement about the other
two. Generally, the cosine shape gets the most votes for second place. For small
values of A/L, the results are summarized in the following table.

Approximate
Model type center beight

Triangle V2V LA
Cosine % LA

Circular \/g v LA
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Since V2 > 4/7 > \/3/—2, the conjecture about the heights is validated for very small
values of A/L.

We have seen three different models for the buckling of the rail, each using a
different mathematics for its formulation. For a given length and extension, each
may be solved using a computer algebra system. The dimensionless form of the
solution is h/L = \/A/L g(A/L) where g is an analytic function of its argument.
We have, therefore, given the leading term of the series for g. In many instances,
a formula reveals relations that are not readily apparent in a numerical solution. In
these three problems, for example, we see that the buckled height is proportional
to the geometric mean of L and A.

Who Cares If X2 + 1 = 0 Has a Solution?
Viet Ngo (viet@csulb.edu) and Saleem Watson (saleem@csulb.edu), California State
University, Long Beach, CA 90840-1001

The shortest path between two truths in the real domain passes through the complex
domain.—/Jacques Hadamard

Most mathematics textbooks introduce complex numbers as a means of solving equa-
tions that obviously have no real solutions. A typical introduction goes something
like this:

The equation 22 + 1 = 0 has no real solution because there is no real number  that
can be squared to produce —1. To solve such an equation, mathematicians created an
expanded system of numbers using the imaginary unit ¢, defined as 1 = +/—1.

A student may well ask: Why solve this equation in the first place? And in any case,
who cares if it has a solution?

These are legitimate questions. One would expect a practical or intuitive justi-
fication for introducing such a novel idea. After all, there are direct and intuitive
motivations for introducing other aspects of our number system. The natural num-
bers are used for counting, negative numbers may be used to describe debt, rational
numbers help us describe such natural concepts as “half a quart of milk,” and irra-
tional numbers are needed for representing certain distances in the plane. On the
other hand, there is no easy application of complex numbers that serves to moti-
vate their use at the usual introductory level. Moreover, by the time students are
sophisticated enough to understand the applications of complex numbers, the need
to motivate them is usually forgotten.

In this paper we give four situations that can serve to motivate complex numbers
for students who have had two semesters of calculus. We have found that the best
motivation for most new ideas is their utility in solving real problems. The examples
presented here use complex numbers as a tool for obtaining real answers in real
situations.

The mother of invention. Historically, complex numbers were introduced for
practical reasons. Their use by Rafael Bombelli (1526-1572) provides insight into the
need for complex numbers. ’

In the sixteenth century mathematicians were interested in finding solutions (real,
of course) of polynomial equations. One of the high points [3] was Cardano’s solution
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