A computer algebra system or graphing calculator gives us approximate values for x
and ¢ leading to the points (—0.608, 0.544) on the graph of f and (—0.272, —0.074)
on the graph of g. The distance between these points is 0.578.

To prove that our procedure is valid under the stated conditions, suppose we are
given differentiable functions f and g for which the set {|PQ|: P = (x, f(x)), QO =
(¢, g(2))} attains a minimum value d = | PyQy|, where neither Py nor Qy is an endpoint
of one of the graphs. We want to prove that the line segment Py(Q, is perpendicular
to the tangent lines to f’s graph at P, and to g’s graph at Q. To do this, we hold the
endpoint Qg = (o, g(%)) fixed and let P = (x, f(x)) vary. The square of the distance
from Q, to P is the differentiable function D(x) = (x — 15)? 4+ (f (x) — g(#))* whose
minimum value occurs where D'(x) = 0:

2(x —19) +2(f (x) — g(to) f'(x) = 0.
So, D(x) is minimum when f'(x) = 0 and x = fy, or when f'(x) # 0 and

fx) —gw) _ 1
X —1Iy frx)

In either case, the segment PyQ, of minimum length is perpendicular to f’s graph at
the point Py. By reversing the roles of f and g, we get the other part of the claim and
this completes the proof.

Of course, in practice, finding the lengths of line segments P Q that are perpendic-
ular to the tangent lines at P and Q gives us only candidates for the distance between
the graphs. We would need to determine whether the length of one them actually is the
minimum distance between the two graphs [cf. c) below].

Suggested Problems

a) Find the minimum distance between the graphs of f(x) = ¢* and g(¢t) = Inzt.

b) Find the minimum distance between the graphs of f(x) = 1+ (x 4+ 1)? and
g®)y=1-1/t( > 0).

¢) f(x) =x+2+sinxand g(t) =t.

The Alternating Harmonic Series
Leonard Gillman (len@math.utexas.edu), The University of Texas, Austin, TX 78712

The following derivation that the alternating harmonic series converges to In2 is
more elementary than the standard one in the textbooks or the several that have ap-
peared in journals (e.g., [1], [2], [3], [4], [5]) in that it does not use integrals or infinite
series (except trivially).

Define

1 1
Hn=1+—+"'+—’
2 n
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Figure 1.

and set
Vn = H, —Inn, )/,: =H, ; —Inn.

The total area moved to the left is, after one step, | —In2 = H; —In2 = y,. After
two steps itis (1 —In2) + (% — (n3—1n2)) = H, — In3 = y;. And so on. The figure
shows y, as a sum of disjoint “triangular” areas on the interval [0, 1]. (This is our one
use of integrals.) Since the sequence (y,) is increasing and bounded above (by 1), it
converges to a limit. The sequence (y,) = (y, + %) has the same limit. This limit is
the famous Euler’s constant, denoted by y:

y = lim y, lim(H, — Inn).

This number arises often in advanced mathematical analysis, and its value has been
computed to a healthy number of decimal places. To three places, y = .577. By the
way, to this day no one knows whether y is rational or irrational.

Let A (or A?) denote the alternating harmonic series and A, its nth partial sum.
Since the terms of A alternate in sign and decrease in absolute value to zero, A con-
verges to a limit; i.e., its sequence of partial sums (A,) converges to that limit. Since
every subsequence of (A,), in particular the subsequence (A,,), has the same limit as
the parent sequence (A,), it suffices to prove that Ay, — In2. (Similarly, y,, — y.)
Writing out the terms shows that

A2n = H2n - Hn' (1)
Then

Ay, = [Hy, —In2n] — [H, —Inn]+1n2n —Inn
—y—y+In2=In2.
This derivation was outlined as a problem in the calculus text [2, p. 803], now out
of print though probably available in some libraries.
For the generalization to k > 2, our point of departure will be the analogue of (1):

A/lzn = Hkn - Hn- (2)
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For example,

A, =H 11{—1+1 2+1+1 2t L, L2
e R T R 3n—-2 3n—1 3n

the (3n)th partial sum of the series

ISR
2 3 45 6 '
To show that A® converges, we group the positive pairs and decompose the negative
terms, as follows:

Al = 1_’_1 _ l+l + l_’_l -
- 2 3°3 45 ’
displaying A* as an alternating series whose terms decrease in absolute value to zero.
The series A* therefore converges to a limit. Consequently, (A3, ), a subsequence of its

sequence of partial sums, converges to the same limit. Arguing as in the original case,
we find that

A3, — In3 and, therefore, A> — In3.

To see the pattern more fully, note that

AL = Hy—Hy =142+ 2 3+1+1+1 3+
T T T2 T3 45 76 7T 8

Let A* denote the series whose (kn)th partial sum is Af,. The proof that A* — Ink

goes the same way as the one just given for k = 3. (These extensions were noted in a
successor manuscript to [2], which however died on the editor’s desk.)
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[ S

Using Differential Equations to Describe Conic Sections

Ranjith Munasinghe (rmunasinghe @ wvutech.edu), West Virginia University Institute
of Technology, Montgomery, WV 25136

“A parabola is the set of poinfs in a plane that are equidistant from a fixed point F
(called the focus) and a fixed line (called the directrix).” This definition is included
in many calculus texts that have a chapter on analytic geometry. Using basic algebra
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