_ n—1 n—3 __ n—1 n—4 __ n—1 n—=5 _ n—1 n—>6
L e - PRI EIREE= L E

—126(”g 1)2"—7 - 168("; 1)2"—8}.

This formula is established for # > 11 by an inclusion—exclusion argument (details
available from the author), together with the facts that

n—1\[n—-2)_[k+1|[n-1 and n—1\[n—-6|_[k+5|[n-1
1 k 1 k+1 5 k 5 k+5
and then checked to be true for 1 < » < 10 also.
If we multiply by #, use the fact that

n(";1)=(/e+1)(kal)

and sum over 7 > 0, we find that

441357301 584684533

E(X)= Y np,= L=12+E(X)=m.

n=0 11943936 ’
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An “Extremely” Cautionary Tale
Mark Krusemeyer (mkruseme@carleton.edu), Carleton College, Northfield, MN 55057

This is a tale of something that might be about to happen to you, as it did to me
not too long ago. If so, you are teaching multivariable calculus, as you have often
done before, and it is time to make up an exam. This particular exam should cover
topics such as directional derivatives, gradient, maxima and minima, and Lagrange
multipliers. Since only one class period is available, the computations had better be
fairly straightforward. In particular, the Lagrange multiplier problem should proba-
bly be similar to one that the students are (supposed to be) familiar with.

One of the assigned homework problems, number 10 on p. 730 of [1], reads as
follows: “Find the least distance between the origin and the surface x*y — z*+ 9 =
0.” This is a fine problem, but the numbers are a bit unwieldy; the x-coordinates of

the closest points (on the surface) to the origin turn out to be + ?/ﬁ So you
decide to replace 9 by % and then see how to choose k to streamline the
computation. While you are at it, you interchange x and y to make the problem
look slightly different.

Of course, you have no trouble minimizing f(x, y, z) = x* + y* + z* under the
constraint g(x, y, 2) = xy* — z* + k = 0, using Lagrange multipliers. Here is a sketch
of your computation (soon you will be checking this very carefully, in view of later
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events, but all the algebra is indeed correct):

Vi=AVg=2x=A9% 2y=2A-2xy, 2z=A"(—22)

= A= —1(Case 1) or z=0 (Case 2).

In Case 1 we have 2x= —y* 2y= —2xy, xp*—2z*+k=0. The equation
2y = —2xy leads to the subcases y =0 and x= —1, and we end up with the six
possible points (0,0, + V&) and (=1, + V2, + V& — 2). In Case 2 we have 2x=
Ay% 2y=A-2xy, xp*+k=0.1If y=0 we get x=0, k=0, and so the point

(0,0,0) we find is not new; if y# 0 we get A = —, which leads to the two new
X

points (— 3\//@/2 , T \/53\//@/2 , 0).

By now you see that to get a nice answer, &= 2 is a good choice. For & = 2 the
points found become (0,0, +v2) and (=1, +v2,0); the distances from these
points to the origin are V2,V/3 respectively, so V2 is the least distance.

To check your answer, you decide to redo the problem without Lagrange
multipliers. After all, if xy*—2?+2=0, then 2?=xy*+2, so x*+)*+2z*=
x%+p*+xp*+ 2, and so we should find the points closest to the origin if we
minimize A(x, y) = x*+ y* + xy* + 2. A routine computation starting with d5/dx
=3dh/dy=0 yields (0,0) and (=1, +2) as the critical points of the function b,
and the answer above is confirmed.

All right, confession time. This isn’t quite what happened to me—and one of
the two methods above is wrong, as we’ll see shortly. What actually happened is
that I chose k=16 instead of k=2, The ‘“candidate points” found using the
Lagrange multiplier methods were, therefore, (0,0,4), (=1, V2, +V14), and
(=2, +2v2,0). Since the distances from these points to the origin are 4, V17,
Vi2 =2/3 respectively, this computation gave 23 as the least distance from the
origin to xy* —z* +16=0.

On the other hand, the check without Lagrange multipliers, relying on the
substitution z* = xy* + 16, yielded essentially the same function to minimize as for
k = 2, specifically h(x, y) = x* + y* + xp* + 16; only the constant term had changed.
So b still had the critical points (0,0) and (=1, +v2), and since h(0,0) <
h(—1, + V2), this method gave 1/h(0,0) = 4 as the least distance from the origin to
xy?—2z*+16=0.

Obviously, something was wrong somewhere, and this was the point at which I
spent at least twenty minutes checking my algebra, to no avail.

As I realized eventually, the mistake is in the second method. The trouble is that
when we substitute z? = xy* + k into x*+ y* + z* and then look for the minimum
of h(x, y)=x*+y*+xy*+ k, we lose information. Specifically, we lose track of
the fact that xy”® + k, being equal to z*, must be nonnegative. So we should really
look for the minimum of A(x, y) on the region R={(x, y)|xy*+ k> 0}. Now it is
easy to see that, depending on the value of k&, this minimum may occur either at a
critical point of A(x, ¥) or at a point on the boundary curve xy* + k = 0. The figure
illustrates what actually happens for various values of k. In each case, the region R
is shaded, the critical points (0,0) and (—1, + v2) of h(x, y) are shown whether or

not they are in R, along with the boundary points (— 3\//e/ 2,42 3\/ k/2), and
those point(s) where A(x, y) has its minimum on R are circled.

The moral of this cautionary tale: If you are looking for an extremum of fx, y, z)
under a constraint g(x, y, z) =0 and you do so by using the constraint to rewrite
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/A k=0 0<k<2

ry

2<k<—
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Sx, v, 2) as h(x, y), which reduces the problem to a two-variable one, make sure
to look for the extremum of A(x, y) in the region of the x, y-plane consisting of

only those points (x, y) for which there actually exists a number z with g(x, y, z)
=0.

k<0

A\
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