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1. Setting the stage 

We've all been given a problem in a calculus class remarkably similar to the following 
one: 

Farmer Ted is building a chicken coop. He decides he can spare 190 square feet of his land for the 
coop, which will be built in the shape of a rectangle. Bemg a practical man, Farmer Ted wants to 
spend as little as possible on the chicken wire for the fence. M'hat dimensions should he make the 
chicken coop? 

By solving a simple optimization problem, we learn that Fariner Ted should make his 
chicken coop a square with side lengths J190 feet. And that, according to the solution 
manual, is that. 

But the calculus books don't tell the rest of the story: 

So Farmer Ted went over to Builders Square and told the salesman, "I'd like 4 f i  feet of chicken 
mire, please." The salesman, however, replied that he could sell one foot or hvo feet or a hundred 
feet of chicken wire, but u~llat the heck was 4 f i  feet of chicken mire? Farmer Ted was taken 
aback, explaining heatedly that his famil had been buying as little chicken mire as possible for 
generations, and he redly wanted 4 d f e e t  of chicken wire measured off for him immediately! 
But the salesman, fearing more irrational behavior from Farmer Ted, told him, "I don't want to hear 
about your roots. M'e do business in a natural way here, and if you don't like it you can leave the 
whole store." Well, Farlner Ted didn't feel that this treatment was commensurate with his request, 
but he left Builders Square to rethink his coop from square one. 

At first, Farmer Ted thought his best bet would be to make a 10' x 19' chicken coop, 
necessitating the purchase of 58 feet of chicken mire-certainly this was better than 
86 feet of chicken wire for a 5' x 38' coop, say. But then he realized that he could be 
more cost-effective by not using all of the 190 square feet of land he had reserved for 
the coop. For instance, he could construct an 11'X 17' coop (187 square feet) with 
only 56 feet of chicken wire; this would give hiin about 3.34 square feet of coop space 
per foot of chicken wire purchased, as opposed to only 3.28 square feet per 
chicken-mire-foot for the 10' x 19' coop. Naturally, the parsimonious farmer won- 
dered: could he do even better? 

2. Posing the problem 

Jon Grantham posed the following problem at the 1998 SouthEast Regional Meeting 
On Numbers in Greensboro, North Carolina: given a positive integer N,find the 
dimensions of the rectangle with integer side lengths and area at most N whose 
area-to-perimeter ratio is largest among all such rectangles. In the story above, 
Fariner Ted is trylng to solve this problem for N = 190. 
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Let's introduce some notation so we can formulate Granthain's problein more 
precisely. For a positive integer n, let s(n) denote the least possible semiperimeter 
(length plus width) of a rectangle with integer side lengths and area n. (Since the 
area-to-semiperimeter ratio of a rectangle is always twice the area-to-perimeter ratio, 
it doesn't really change the problein if we consider semiperiineters instead of 
perimeters; this will eliminate annoying factors of 2 in many of our formulas.) In other 
(and fewer) words, 

where din means that d divides n. 
Let F(n) = n/s(n) denote the area-to-semiperimeter ratio in which we are inter- 

ested. We want to investigate the integers n such that F(n) is large, and so we define 
the set d of "record-breakers" for the function F as follows: 

(Well, the "record-tiers" are also included in d . )  Then it is clear after a moment's 
tl~ought that to solve Grantham's problein for a given number N, we simply need to 
find the largest element of d not exceeding N. 

By computing all possible factorizations of the numbers up to 200 by brute force, 
we can make a list of the first 59 elements of d: 

If we write, in place of the elements n ~ d ,the dimensions of the rectangles with area 
n and least semipeiimeter, we obtain 

a list that exhibits a tantalizing promise of pattern! The interested reader is invited to 
try to determine the precise pattern of the set d before readng into the next section, 
in which the secret will be revealed. One thing we notice iininedately, though, is that 
the dimensions of each of these rectangles are almost (or exactly) equal. For this 
reason, we will call the elements of d almost-squares. This supports our intuition 
about what the answers to Grantham's problein should be, since after all, Fariner Ted 
would build his rectangles with precisely equal sides if he weren't hampered by the 
integral policies of (the ironically-named) Builders Square. 

From the list of the first 59 almost-squares, we find that 182 is the largest 
almost-square not exceeding 190. Therefore, Fariner Ted should build a chicken coop 
with area 182 square feet; and indeed, a 13' X 14' coop would give him about 3.37 
square feet of coop space per foot of chicken wire which is more 
cost-effective than the options he thought of back in Section 1.But what about next 
time, wllen Farmer Ted wants to build a supercoop on the 8,675,309 square feet of 
land he has to spare, or even more? Eventually, computations will need to give way to 
a better understandng of d. 
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Our specific goals in this paper are to answer the following questions: 

1. Can we describe d more explicitly? That is, can we characterize when a number 
n is an almost-square with a description that refers only to n itself, rather than 
all the numbers smaller than n? Can we find a formula for the number of 
almost-squares not exceeding a given positive nulnber x? 

2. Can we quickly compute the largest almost-square not exceedmg 	N, for a given 
nulnber N ?  We will describe more specifically what we mean by "quickly" in 
the next section, but for now we simply say that we'll want to avoid both brute 
force searches and computations that involve factoring integers. 

I11 the next section, we mill find that these questions have surprisingly elegant answers. 

3. Remarkable results 

Have you uncovered the pattern of the almost-squares? One detail you might have 
noticed is that all numbers of the form m X in and (m - 1) X m, and also (m - 1) X 
(m + 11, seem to be alinost-squares. (If not, maybe we should come up with a better 
name for the elements of d ! )  This turns out to be true, as we will see in Lemma 3 
below. The problem is that there are other almost-squares than these-3 x 6, 4 x 7 ,  
5 X 8,  6 X 9, 6 X 10-and the "exceptions" seem to becoine more and more nuiner- 
ous . . . . Even so, it will be convenient to think of the particular almost-squares of the 
form m x m and (m - 1) x m as "punctuation" of a sort for d.To this end, we will 
define a flock to be the set of almost-squares between (m - 1)" 1and m(m - 11,or 
between m(m - 1) + 1and m2, including the endpoints in both cases. 

If we group the rectangles correspondng to the almost-squares into flocks in this 
way, indicating the end of each flock by a semicolon, we obtain: 

It seems that all of the rectangles in a given flock have the same semiperimeter; this 
also turns out to be true, as we will see in Lemma 4 below. The remaining question, 
then, is to determine which rectangles of the common semiperimeter a given flock 
contains. At first it seems that all rectangles of the "right" semiperimeter will be in 
the flock as long as their area exceeds that of the last rectangle in the preceding flock, 
but then we note a few omissions-2 X 5, 3 X 7, 4 X 8,  5 X 9, 5 X 10-which also 
becoine more numerous if we extend our computations of d... . 

But as it happens, this question can be resolved, and we can actually determine 
exactly which numbers are almost-squares, as our main theorem indicates. Recall that 
1xJ denotes the greatest integer not exceeding x. 

MAIN THEOREM.For any integer m 2 2, the set of almost-squares between 
(m - 1)' + 1 and m~inc lus iue)  consists of two flocks, the first of which is 

{(m + a m ) ( m  -a,,, - 1 ) ,  ( m  +a,,  - l ) ( m  - a m ) ,  . . . ,( m  + l ) ( m  - 21, m(m - 1))  

where a,,, = [ ( \ i Z G T  - I)/?,], and the second of which is 

{ ( m + b m ) ( m - b , , L ) , ( m + b m - l ) ( m - b l , , + l ), . . . , ( m + l ) ( m - l ) , m 2 }  

where b,, =lm1. 
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The Main Theorem allows us to easily enumerate the almost-squares in order, but 
if we simply want an explicit characterization of almost-squares without regard to 
their order, there turns out to be one that is extremely elegant. To describe it, we 

recall that the triangular numbers {O,l, 3,6,10,15, . . . } are the numbers t,, = (11= 

n(n - 1)/2 (Conway and Guy [I] describe many interesting properties of these and 
other "figurate" numbers). We let T(x) denote the number of triangular numbers not 

exceeding x. (Notice that in our notation, t, = (:) = 0 is the first triangular number, 

so that T(1) = 2, for instance.) Then an alternative interpretation of the Main 
Theorem is the following: 

COROLLARY1. The almost-squares are precisely those integers that can be written 
in the form k(k + h), for some integers k 2 1 and O Ih I~ ( k ) .  

It is perhaps not so surprising that the triangular numbers are connected to the 
almost-squares-after all, adding t,, to itself or to t,,,, yields almost-squares of the 
form m(m - 1) or mf respectively (FIGURE 1 illustrates this for m = 6). In any case, 

~ n ( m- 1) = t,,,+ t,,, 

111' = t,,,t 

FIGURE 1 
Two triangular integers invoke an almost-square. 

the precision of this characterization is quite attractive and unexpected, and it is 
conceivable that Corollary 1has a drect proof that doesn't use the Main Theorem. 
We leave this as an open problem for the reader. 

In a different drection, we can use the Main Theorem's precise enumeration of the 
almost-squares in each flock to count the number of almost-squares quite accurately. 

COROLLARYLet A(x) almost-squares not exceeding x. 2. denote the number of 
Then for x 2 1, 

where R(x) is an oscillating term whose order of magnitude is x114. 

A graph of A(x) (see FIGURE 2) exhibits a steady growth with a little bit of a wiggle. 
When we isolate R(x) by subtracting the main term 2JTx3I4/3 +x112/2 from A(x), 
the resulting graph (FIGURE 2, where we have plotted a point every time x passes an 
almost-square) is a pyrotechnic, almost whimsical &splay that seems to suggest that 
our computer code needs to be rechecked. Yet this is the true nature of R(x). When 
we prove Corollary 2 (in a more specific and precise form) in Section 6, we will see 
that there are two reasons that the "remainder term" R(x) oscillates: there are 
oscillations on a local scale because the almost-squares flock towards the right half of 
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FIGURE 2 
Superficial steadiness of A(%), mesmerizing meanderings of R(r) .  

each interval of the form ( (m- I)', m(m - I)] or (m(m - I), m2], and oscillations on 
a larger scale for a less obvious reason. 

These theoretical results about the structure of the almost-squares address question 1 
nicely, and we turn our attention to the focus of question 2 ,  the practicality of 
actually computing answers to questions about alinost-squares. Even simple tasks like 
printing out a number or addng two numbers together obviously take time for a 
computer to perform, and they take longer for bigger numbers. To measure how the 
computing time needed for a particular computation increases as the size of the input 
grows, let f (k)  denote the amount of time it takes to perform the calculation on a 
k-digit number. Of course, the time could depend significantly on which k-digit 
number we choose; what we mean is the worst-case scenario, so that the processing 
time is at most f (k)  no matter which k-dgit number we choose. 

We say that a computation runs in polynomial time if this function f(k)  grows only 
as fast as a polynomial in k ,  i.e., if there are positive constants A and B such that 
f(k) <AkB. Generally speaking, the computations that we consider efficient to 
perforin on very large inputs are those that run in polynomial time. (Because we are 
only concerned with this category of computations as a whole, it doesn't matter if we 
write our numbers in base 10 or base 2 or any other base, since this only multiplies 
the number of digits by a constant factor, like log,lO.) 

All of our familiar arithmetic operations +, -, X ,  +, 6,1.1 and so on have 
polynomial-time algorithms. On the other hand, performing a calculation on each of 
the numbers from 1 to the input n,  or even from 1 to 6,etc., is definitely not 
polynomial-time. Thus computing alinost-squares by their definition, which involves 
comparing F(n) with all of the preceding F(k), is not efficient for large n. Further- 
more, the obvious method of factoring numbers-testing all possible divisors in turn 
-is not polynomial-time for the same reason. While there are faster ways to factor 
numbers, at this time there is no known polynomial-time algorithm for factoring 
numbers; so factoring even a single number would make an algorithm inefficient. 
(Dewdney [2] writes about many facets of algorithms, including this property of 
running in polynomial time, while Pomerance [4] gives a more detailed discussion of 
factoring algorithms and their computational complexity.) 

Fortunately, the Main Theorem provides a way to compute alinost-squares that 
avoids both factorization and brute-force enumeration. In fact, we call show that all 
sorts of computations involving almost-squares are efficient: 

COKOLLAKY each of the follow- 3. There are polynomial-time algorithms to pe$orm 
ing tasks, given a positive integer N :  

(a) determine whether N is an almost-square, and, q s o ,  determine the dimensions 
of the optinzal rectangle; 
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(b) 	find the greatest almost-square not exceeding N ,  including t l ~ e  climensions of the 
optimal rectangle; 

(c) compute tlae number A( N )  of almost-squares not exceeding N ;  

(dl find the Ntla almost-square, including the dimensions of the optimal rectangle. 


We reiterate that these algorithms work without ever factoring a single integer. 
Corollary 3, together with our lack of a polynomial-time factoring algorithm, has a 
rather interesting implication: for large values of N ,  it is much faster to compute the 
most cost-effective chicken coop (in terms of area-to-semiperimeter ratio) with area at 
most N than it is to compute the most cost-effective chicken coop with area equal 
to N ,  a somewhat paradoxical state of affairs! Nobody ever said farming was easy. . . . 

4. 	The theorem thought through 

Before proving the Main Theorem, we need to build up a stockpile of easy lemmas. 
The first of these simply confirms our expectations that the most cost-effective 
rectangle of a given area is the one whose side lengths are as close together as 
possible, and also provides some inequalities for the functions s ( n )  and F(n) .  Let us 
define d ( n )  to be the largest divisor of n not exceedng 6 and cZt(n) the smallest 
divisor of n that is at least 6,so that d f ( n )= n / d ( n ) .  

LEMMA1. The rectangle with integer side lengtlas and area n that has tlae smallest 
semiperimeter is the one with dimensions d ( n )  X d t ( n ) .  In other w o r h ,  

W e  also laaue the inequalities 

s ( n )  2 2 6  and F ( n )  5 6 / 2 .  

Proof: For a fixed positive number n ,  the function f ( t )  = t + n / t  has derivative 
f ' ( t )  = 1 - n / t f  whicll is negative for 1It < 6 .  Therefore t + n / t  is a decreasing 
function of t in that range. Thus if we restrict our attention to those t such that both t 
and n / t  are positive integers (in other words, t is an integer dividing n) ,  we see that 
the expression t + n / t  is minimized when t = d(n) .  \.lie therefore have 

where the last inequality follows from the Arithmetic Mean-Geometric Mean inequal- 
ity. The inequality for F ( n )  then follows directly from the definition of F. rn 

If we have a number n written as c x d ,  where c and d are pretty close to 6 ,  
when can we say that there isn't some better factorization out there, so that s ( n )  is 
really equal to c + d? The following lemma gives us a useful criterion. 

LEMMA2. If a number n satisbing ( m  - 112< n 5 m ( m  - 1) laas the form n = 

( m  - a - l ) ( m+ a )  for some number a ,  then s ( n )  = 2 m  - 1, and d ( n )  =m - a - 1 
and d t ( n )  =m + a. Similarly, if a number n satisfying m ( m  - 1)< n ImVaas  the 
form n =na2 - b 2  for some number b ,  tlaen s ( n )  = 2 m ,  and d ( n )  = m  - b and 
d t ( n )= m + b. 

Proof: First let's recall that, for any positive real numbers a and p,  the pair of 
equations r + s = a and rs = p has a unique solution ( r ,  s )  with r 5 s, as long as the 
Arithmetic Mean-Geometric Mean inequality a / 2  2 fi holds. This is because r 
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and s nil1 be the roots of the quadratic polynonlial t 2  - a t  + P ,  which has real roots 
when its discriminant a" 4P is nonnegative, i.e., when a / 2  2 a. 

Now if n = (nz - a - l ) ( m+ a), then clearly s ( n )  5 ( m  - a - 1) + ( m  + a )  = 

2tn - 1 b the definition of s(n) .  011 the other hand, by Lemma 1 we know that 
s ( n )2 2fn > 2(nz - I), and so s ( n )=2 m  - 1 exactly.We now know that rl(7z)dt(n)= 

rz = (nz - a - l ) ( m  + a )  and 

and of course cl(n)5 clt(n) as well; by the argument of the previous paragraph, we 
conclude that cl(n)= m - a - 1 and nT1(n)=m + a. This establishes the first assertion 
of the lemma, and a similar argument establishes the second assertion. 

Of course, if a number n satisfies .s(n)= 2 m  for some m ,  then n can be written as 
n = crl with c 5 cl and c + cl = 2 m ;  and letting b = (1 - nz, we see that n = ccl = 

( 2 m  - cl)rl= ( m  - b ) ( m  + b) .  A similar statement is true if s ( n )  = 2 m  - 1, and so we 
see that the converse of Lemma 2 also holds. We also remark that in the statement 
of the lemma, the two expressions m(7n - 1) can be replaced by ( m  - 1/2)' = 

m(rn - 1) + 1 / 4  if we wish. 
Lemma 2 implies in particular that for m 2 2, 

s ( m 2 )  = 2 m ,  s ( m ( m  - 1 ) )  = 2 m  - 1 ,  and s ( ( m  - l ) ( m  + 1 ) )  = 2 m ,  

m m ( n z - 1 )  m 2 - 1
F ( m 2 )= -2 ,  F ( m 2 - n ~ )= 2 m - 1  , and ~ ( m ' - 1 )= 

Using these facts, we can verify our theory that these numbers are always almost-
squares. 

LEMMA3. Each positive integer of the forrn m2, in(m - 11, 07- mL 1 is an 
almost-square. 

It is interesting to note that these are precisely those integers n that are divisible by 
161(see [3]),one of the many interesting things that call be discovered by referring 
to Sloane and Plouffe [6]. 

Proof: We verify directly that such numbers satisfy the conltion in the definition 
(1 )  of sf, If k < m" then by Lemma 1 we have F ( k )  5 &/2 < m / 2  = F(m2)) ,and so 
nz"s an almost-square. Similarly, if k < m ( m  - 11, then again 

d m ( m - 1 )
F ( k )  I I 2 < 2 m - 1  = F ( t n ( m  - 1 ) ) ,  

where the strict inequality can be verified as a "fun" algebraic exercise. Thus 
m ( m  - 1) is also an almost-square. A siinilar argument shows that m L  1 is also an 
almost-square. 

Now we're getting somewhere! Next we show that the seiniperiineters of the 
rectangles corresponding to the almost-squares in a given flock are all equal, as we 
observed at the beginning of Section 3. 

LEMMA4.  Let m 2 2 be an integer. If n is an almost-square satisfying 
( m  - 1)' < n I nz(m - l ) ,  then s ( n )  = 2 m  - 1; similarly, ijf n is an almost-square 
satisfying m ( m  - 1) < n 5 7n2,t h ~ ns ( n )  = 2 m .  
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Proof: If n = m ( m  - I ) ,  we have already shown that s ( n )  = 2 m  - 1. If n satisfies 
( m  - 1)' < n < m ( m  - I ) ,  then by Lemma 1 we have s ( n )  2 2 6  > 2 ( m  - 1). On the 
other hand, since n is an almost-square exceeding ( m  - 112,we have 

m - l-- n m ( m - 1 )  
2 - ~ ( ( m- 1)" I F ( n )  = -

< s ( n >  ' 

and so s ( n )  < 2m.  Therefore s ( n )  = 2 m  - 1 in this case. 

Similarly, if n satisfies m ( m  - 1) < n < m 2 ,  then s ( n )  2 2 6  2 2- > 
2 m  - 1; on the other hand, 

and so s ( n )  < ( m  + 1)(2m - l ) / m  < 2 m  + 1. Therefore s ( n )  = 2 m  in this case. 

Finally, we need to exhibit some properties of the sequences a,, and b,,, defined in 
the statement of the Main Theorem. 

LEMMA5. Define a,, = [(d- - 1) /2]  and b,,, = 1-1. For any integer 
m 2 2 :  

(a) a,, I blnnaln+ 1; 

(b) b,, = 1 m /  -1; 
(c) a , , , + b I n = [ J 2 m ] - 1. 

We omit the proof of this lemma since it is t e lous  but straightfonvard. The idea is 
to show that in the sequences a,,,, b,,,, [m/d-], and 1 6 1 ,  two consecutive 
terms either are equal or else differ by 1, and then to detern~ineprecisely for what 
values of m the differences of 1 occur. 

Armed with these lemmas, we are now ready to furnish a proof of the Main 
Theorem. 

Proof of the Main Tl~eorem.Fix an integer m 2 2. By Leinina 4, every almost-square 
n with ( m  - 1)" n nm ( m  - 1) satisfies s ( n )  = 2 m  - 1; while by Lemma 2, the 
integers ( m  - 112 < n I m ( m  - 1) satisfying s ( n )  = 2 m  - 1 are precisely the elements 
of the form n ,  = ( m  - a - l ) ( m  + a )  that lie in that interval. Thus it suffices to 
determine which of the n ,  are almost-squares. 

Furthermore, suppose that n ,  is an almost-square for soine a 2 1. Then F(n,) 2 
F ( n )  for all n < n ,  by the definition of d,while F(n,) > F ( n )  for all n ,  < n < n,-, 
since we've already concluded that no such n call be an almost-square. Moreover, 
n,-,  > n ,  and s(n,- ,)  = 2 m  - 1 = s(n,), so F(n,-,)  > F(n,), and thus n,-,  is an 
almost-square as well. Therefore it suffices to find the largest value of a (correspond-
ing to the smallest n,) such that n ,  is an almost-square. 

By Lemma 3, we lcnow that ( m  - 1)' is an almost-square, and so we need to find 
the largest a such that F(n,) 2 F ( ( m  - l ) ' ) ,  i.e., 

which is the same as 2a(a + 1) + I I m .  By completing the square and solving for a,  
we find that this inequality is equivalent to 
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and so the largest integer a satisfying the inequality is exactly a = [(JZFT - 1) /2]  
=a,,, as defined in the statement of the Main Theorem. This establishes the first part 
of the theorem. 

By the same reasoning, it suffices to find the largest value of b such that 
~ ( m "  b 2 )2 F ( m ( m  - I ) ) ,  i.e., 

which is the same as 

or b Il m / J i Z F i ] .  But by Leinina 5(b), [m/\/2m--1] =b,, for m 2 2, and so the 
second part of the theorem is established. 

Wit11 the Main Theorem now proven, we reinark that Leinma 5(c) implies that 
for any integer m 2 2, the nuinber of almost-squares in the two floclcs between 
( m  - 1)' + 1 and m 2  is exactly ( 1  + a,,,)+ ( 1  + b,,,) = 1 + 1 6 1 ,  while Leinma 5(a) 
implies that there are either equally many in the two flocks or else one more in the 
second flock than in the first. 

5. Taking notice of triangular numbers 

Our next goal is to derive Corollary 1 froin the Main Theorem. First we establish a 
quick lemma giving a closed-form expression for T ( x ) ,  the number of triangular 
numbers not exceeding x. 

L E M M A6. For all x 2 0,  we haae T ( x )= [~GTi7Z+ 1/21. 

Proof: T ( x )is the nuinber of positive integers n such that t,,5 x ,  or n ( n  - 1 ) / 2  I x. 
This inequality is equivalent to ( n  - 1/21" 2 2  + 1 / 4 ,  or - d 2 x  + 1 / 4  + 1 / 2  5 

n I Jw+ 1 / 2 .  The left-hand expression never exceeds 1 / 2 ,  and so T ( x )  is 
simply the number of positive integers such that n _< d m + 1 / 2 ;  in other 
words, T ( x )= [J /TZT~Z+ 1/21 as desired. 

Proof of Corollary 1. Suppose first that n = k ( k  + la) for some integers k 2 1 and 
h 5 T ( k ) .  Let kt = k + 11, and define 

m = k + ( h + 1 ) / 2  and a = ( h - 1 ) / 2  i f h i s o d d ;  

m = 1c + h / 2  and b = h / 2 ,  if h is even, 

so that 

k = m - a - 1 and k t  = m + a if h is odd; 
k = m - b  and k t = m + b  if 1%is even. 

\.lie claim that 

( m - l ) 2 < ( m - a - l ) ( m + a ) ~ ( m - l / 2 ) 2  iflaisodd; 

( m- 1/212 < m" b 2  I m 2  if h is even. 
( 4 )  
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To see this, note that in terms of k and la, these inequalities become 

A little bit of algebra reveals that the right-hand ine uality is trivially satisfied, while 
the left-hand inequality is t i l e  provided that h < 2  k  + 1. However, from Leinina 6P 
we see that 

for k 2 1. Since we are assuming that 12 a T ( k ) ,this shows that the inequalities (4) do 
indeed hold. 

Because of these inequalities, we may apply Lemma 2 (see the remarks following 
the proof of the lemma) and conclude that 

I
s ( n )  = 2 m - 1 ,  d ( n )  = m - 0 - 1 ,  and d t ( n )  = m + a  iflaisodd; 


s ( n ) = 2 m ,  d ( n )  =m -6, and d t ( n )=m + b if la is even. 


Consequently, the Main Theorem asserts that n is an almost-square if and only if 

a a a,, if 12 is odd; 

bIb,,, if h is even, 

which by the definitions of a,  b, and m is the same as 

( ) ( - ) ( - 2 i f h i s o d d ;  

h / 2  a 1-1 = 14-1 if la is even. 

Since in either case, the left-hand side is an integer, the greatest-integer brackets can 
be removed from the right-hand side, whence both cases reduce to h a d m . 
From here, more algebra reveals that this inequality is equivalent to h a d m 
+ 1 / 2 ;  and since h is an integer, we can add greatest-integer brackets to the 
right-hand side, thus showing that the inequality (5 ) is equivalent to 11 a T ( k ) (again 
using Lemma 6). In particular, n is indeed an almost-square. 

This establishes half of the characterization asserted by Corollary 1. Conversely, 
suppose we are given an almost-square n , which we can suppose to be greater than 1 
since 1 can obviously be written as 1(1 + 0).  If we let la =d t ( n )- d ( n ) , then the 
Main Theorem tells us that 

n = ( m - a - l ) ( n z + a ) ,  d ( n ) = m - a - 1 ,  and c Z 1 ( n ) = m + a  i f h i s o d d ;  

n = m" - b 2 , d ( n ) = m - b ,  and d l ( n )= m + b if h is even 

for some integers na 2 2 and either a with 0Ia I a,,, or b with 0 I b I b,,. If we set 
k = d ( n ) , then certainly n = k ( k  + la). Moreover, the algebraic steps showing that the 
inequality (5) is equivalent to h IT ( k ) are all reversible; and (5) does in fact hold, 
since we are assu~ning that n is an almost-square. Therefore n does indeed have a 
representation of the form k ( k + h) with O I la a T ( k ) .This establishes the corollary. 

rn 

Pinpointing the pioneers We take a slight detour at this point to single out some 
special almost-squares. Let us make the coilvention that the kt11 flock refers to the 
flock of almost-squares with semiperiineter k ,  so that the first floclz is actually empty, 
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the second and third poor flocks contain only 1= 1x 1 and 2 = 1X 2, respectively, 
the fourth flock contains 3 = 1x 3 and 4 = 2 x 2, and so on. The Main Theorem tells 
us that a,,, and b,,, control the number of almost-squares in the odd-numbered and 
even-numbered flocks, respectively; thus, eve137 so often, a flock will have one more 
almost-square than the preceding flock of the same "parity." We'll let a pioneer be an 
almost-square that begins one of these suddenly-longer flocks. 

For instance, from the divisioil of d into flocks on page 261, we see that the 4th 
flock (1 x 3,2 x 2) is longer than the precediilg even-numbered floclc (1 X 11, so 
1X 3 = 3 is the first pioneer; the 9th floclc {3 X 6,4 X 5) is longer than the preceding 
odd-numbered flock {3 X 41, so 3 X 6 = 18 is the second pioneer; and so on, the next 
tvvo pioneers being 6 x 10 in the 16th flock and 10 x 15 in the 25th flock. Now if this 
isn't a pattern waiting for a proof, nothing is! The following lemma shows another ele- 
gant conilection between the almost-squares and the squares and triangular numbers. 

COROLLARY4. For any positive integerj, tlae jtla pioneer equals tJ+l X t,+, (where 
t, is the ith triangular number), wlaicla begins the ( j  + 1)"thjlock. Furthermore, the 
"recorcl-tying" almost-squares (tlaose whose F-values are equal to the F-values of their 
immediate predecessor-s in d )  are precisely the even-numbered pioneers. 

Proof: First, Leinina 5(a) tells us that the odd- and even-numbered flocks undergo 
their length increases in alternation, so that the pioneers alternately appear in the 
flocks of each parity. The first pioneer 3 = 1X 3 appears in the 4th flock, and 
corresponds to m = 2 and the first appearance of b,, = 1in the ~lotatioil of the Main 
Theorem. Thus the (2k - 1)-st pioneer nil1 equal m2 - k 2 ,  where m corresponds to 
the first appearance of b,, = k .  It is easy to see that the first appearance of b,,, = k 
occurs when m = 2k" iin which case the (2 k - 1)-st pioneer is 

Moreover, the flock in which this pioneer appears is the 2m-th or (2k)'-tl1 flock. 
Siinilarly, the 2k-th pioileer will equal (m - k - l)(m + k), where m correspoilds 

to tlle first appearance of a,, = k .  Again one can show that the first appearance of 
a,, = k occurs when m = 2k' + 2k + 1,in which case the 2k-th pioneer is 

Moreover, the floclc in which this pioneer appears is the (2m - 1)-st or (2k + 1)'-th 
flock. This establishes the first assertion of the corollary. 

Since the F-values of the almost-squares form a nondecreasing sequence by the 
definition of almost-square, to look for almost-squares wit11 equal F-values we only 
need to examine consecutive almost-squares. Furthermore, two consecutive almost- 
squares in the same floclc never have equal F-values, since they are distinct numbers 
but by Lemma 4 their seiniperimeters are the same. Therefore we only need to 
determine when the last almost-square in a flock call have the same F-value as the 
first almost-square in the followiilg flock. 

The relationship between the F-values of these pairs of almost-squares was deter- 
mined in the proof of the Main Theorem. Specifically, the equality F((m - 1)') = 

F((m - a - l)(m + a)) holds if and only if tlle right-hand inequality in (2) is actually 
an equality; this happens precisely when m = 2a" 20 + 1,which corresponds to the 
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even-numbered pioneers as was determined above. On the other hand, the equality 
F(m(m - 1)) = ~ ( m "  bb")holds if and only if the inequality (3) is actually an 
equality; but m%nd 2m - 1are always relatively priine (any prime factor of n z h u s t  
&vide m and thus &vides into 2m - 1 with a "remainder" of -11, implying that 
m2/(2m - 1) is never an integer for m 2 2, and so the inequality (3) can never be an 
equality. This establishes the second assertion of the corollary. 

Pairs of triangles: product testing \.lie lcnow that all squares are almost-squares, 
and so t f  is certainly an almost-square for any triangular number tJ;also, Corollary 4 
tells us that the product tJtJ+,of two consecutive triangular numbers is always an 
almost-square. This led the author to wonder which numbers of the form t,,t,, are 
almost-squares. If m and n &ffer by inore than 1,it would seem that the rectangle of 
dimensions t,,,x t,, is not the most cost-effective rectangle of area t,t, ,  and so the 
author expected that these products of two triangular numbers would behave ran-
domly with respect to being almost-squares-that is, a few of them might be but most 
of thein wouldn't. After some computations, however, FIGURE3 emerged, where a 
point has been plotted in the (m, n) position if and only if t,,t,, is an almost-square; 
and the table exhibited a totally unexpected regularity. 

FIGURE 3 
Amazing almost-square patterns in products of bvo triangles 

Of course the syrninetry of the table across the main dagonal is to be expected 
since tint,= t,,t,. The main dagonal and the first off-diagonals are filled with plotted 
points, corresponding to the almost-squares t:, and t,,,t,,,+,;and, in hindsight, the 
second off-diagonals correspond to 

which is the product of two consecutive integers (since tn2  + rn is always even) and is 
thus an almost-square as well. But apart from these central diagonals and some 
garbage along the edges of the table where m and n are quite dfferent in size, the 
checkerboard-like pattern in the late-shaped region of the table seems to be telling us 
that the only thing that matters in determining whether t,,,t, is an almost-square is 
whether m and n have the same parity! 
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Once this phenomenon had been discovered, it turned out that the following 
corollary could be derived from the prior results in this paper. \Ve leave the proof as a 
challenge to the reader. 

COROLLARY5 .  Let m and n be positiue integers with n - 1 > m > 
4--3n - 1. Then t,,,t, is an almost-square $and only if n -m is eum. 

4--We remark that the function 3 n
(a- 11, which 

- 1 is asymptotic to (3  - 2 a ) n  + 
explains the straight lines of slope -( 3  - 2 f i )  = -0.17 and 

- 1 / ( 3  - 2 J 6 )  = -5.83 that seem to the eye to separate the orderly central region in 
FIGURE3 from the garbage along the edges. 

6. Counting and computing 

In this section we establish Corollaries 2 and 3. We begin by defining a function B ( x )  
that will serve as the backbone of our investigation of the almost-square counting 
function A ( x ) .  Let { x }= x - 1x1 denote the fractional part of x,  and define the 
quantities y = y ( x )  = and S = = { x ' / ~ / & } .  Let B ( x )  = B,(x) +{ f i ~ l " ~ }  S ( X )  
B l (x ) ,where 

and 

We remark that y = ( 2 6 )and that Bl(x" is a periodic function of x with period J 6 ,  
and so it is easy to check that the inequalities - 2  1B,(x)  5 - 1 always hold. The 
following lemma shows how the strange function B ( x )  arises in connection with the 
almost-squares. 

LEMMA7 .  For any integer M 2 1, we haue A( M ') = B( M '). 

Proof As remarked at the end of Section 4, the number of almost-squares between 
( m- 1)' + 1 and m2 is 1 6 1 + 1 for m L 2. Therefore 

It's almost always a good idea to interchange orders of summation whenever possible 
-and if there aren't enough summation signs, find a way to create some more! In this 
case, we convert the greatest-integer function into a sum of ones over the appropriate 
range of integers: 
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If we temporarily write p for [ d m ] ,  then 

using the well-known formula for the sum of the first p squares. Since 11x]/n] = 1x/n] 
for any real number x 2 O and any positive integer n ,  the last term can be written as 

while we can replace the other occurreilces of p in equation (7) by J2M - {J2M)  
= JGZ- y( M 9).Writing y for y( M 9and S for S(M 9,we see that 

after much algebraic simplification. This establishes the lemma. 

Now B(x) is a rather complicated function of x, but the next lenlina gives us a 
couple of ways to predict the behavior of B(x). First, it tells us how to pedict 
B(x + y) from B(x) if y is small compared to r (roughly speaking, their difference 
will be y/fi~1/4); second, it tells us how to predict approximately when B(x) 
assumes a given integer value. 

LEMMA8. There is a positive constant C such that 

(a) for all real numbers x 2 1 and O Iy Imin{r /2 ,36) ,  toe have 

(b) i f w e  define zl = +(3j)/"/' - +(3j)'I3 for any positive i~ztegerj,then for all j > C 
toe have zl > 2 arzd B((z, - 1)" <<j < B(z,2), 

If the proof of Leinina 5 was omitted due to its tediousness, the proof of this lemma 
should be omitted and then buried. . . . The idea of the proof is to rewrite B , ( x ) x - ~ / ~  
using the new variable t =x-l l4 ,  and then expand in a Taylor series in t (a slight but 
easily overcome difficulty being that the term y(  x)(l - y(x)) is not dfferentiable 
when is an integer). For the proof of part (b), we also need to rewrite z,i<j-v3 
using the new variable u = j - ' I 3  and expand in a Taylor series in 21. We remark that 
the constant C in Lemma 8 can be taken to be quite small-in fact, C = 5 will suffice. 

With these last lemmas in hand, we can dspatch Corolla~ies2 and 3 in quick 
succession. 
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Proof of Corollary 2. Let s > 1 be a real number and define R(s)  =A(x) -
2fix3I4/3 - &/2, as in the statement of the corollary. We will describe how to prove 
the following more precise statement: 

where 

and IR,(x)l < D for some constant D. The functions g and h are continuous and 
periodic with period 1, and are the causes of the oscillations in the error term R(x). 
The expression g ( f i ~ ' / ~ )  goes through a complete cycle when x increases by about 
2fis3I4 (one can show this using Taylor expansions yet again!), which causes the 
large-scale bounces in the normalized error term ~ ( x ) x - l / ~  4shown in FIGURE 
below. Similarly, the expression h ( 2 A )  goes through a complete cycle wllen s 
increases by about &,which causes the smaller-scale stutters shown in the (horizon- 
tally magnified) right-hand graph in FIGURE 4. 

9.9.10' 9 95.10' lo8 8002 800.801 801' 801.802 801' 

FIGURE 4 
Big bounces and small stutters for R(x)x - ' I4 .  

To establish the formula (9), we shrewdly add B(s )  - B(x) to the expression 
defining R(x), which yields 

from the definition (6) of B,(x). Now B,(x) is a bounded function; and since 
y(  x) = { f i ~ ~ / ~ } ,  - is precisely g ( f i ~ ' / ~  ). So what the expression y( x)(l y( x)) / f i  
we need to show is that B(x) -A(x) = h(2K)x1l4+ R2(s),  where R2(x) is another 
bounded function. 

While we won't give all the details, the outline of showing this last fact is as 
follows: Suppose first that x 2 m 9 u t  that s is less than the first almost-square 
(m  + 1+n,+,)(m - a,,,,,) in the (2m + 1)-st flock, so that A(x) =A(m2). Since 
~ ( m "= ~ ( m "  by Lemma 7, we only need to show that B(x) - ~ ( m ?  is approxi- 
mately h(2&)x1I4; this we can accomplish with the help of Lemma 8(a). 

Similarly, if x < m2 but x is at least as large as the first almost-square 
(m + b,)(~n - b,) in the 2m-th flock, the same method works as long as we take into 
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account the diffel-ence between A(m2) and A(%),which is 1-1 by the Main 
Theorem. And if x is close to an almost-square of the form m(m - 1) rather than m2, 
the same method applies; even though A(m(m - 1)) and B(m(m - 1)) are not 
exactly equal, they differ by a bounded amount. 

Notice that the functions g( t)  and h(t) take values in [O, 1/4f i]  and [O, 1/2f i] ,  
respectively. From this and the formula (9) we can conclude that 

R(x)  5 R(x)  19
lim inf -= - and lim sup -= -

s+.r  xLi4 6~15 Z-=  xLi4 1 2 ~ 5 '  

The interested reader can check, for example, that the sequences yj = 4j4 +j2 
and z,= (2j"j)' satisfy liini,, R( yj)/yj''" 5 / 6 6  and limj,, R(zj) /4i4 = 

19/12fi. 

Proof of Corollam~3. The algorithms we describe will involve only the following types 
of operations: performing or&nary arithmetical calculations + , -, X , +; computing 
the greatest-integer 1.1, least-integer 1.1, and fractional-part {.) functions; taking square 
roots, cube roots, and fourth roots; and comparing two numbers to see which is 
bigger. All of these operations can easily be performed in polynomial time. To get the 
ball rolling, we remark that the functions a,,, b,, B(x), and zj can all be computed in 
polynomial time, since their definitions only involve the types of operations just stated. 

We first describe a polynomial-time algorithm for com uting the number of 
almost-squares up to a given positive integer N. Let M = 1PN 1, so that ( M  - 1)" 
N IM! Lemma 7 tells us that the number of almost-squares up to M ' is B(M '), 
and so we simply need to subtract from this the number of almost-squares larger than 
N but not exceeding M '. This is easy to do by the characterization of almost-squares 
given in the Main Theorem. If N > M(M - 11, then we want to find the positive 
integer b such that M" b2 I N < M~ - (b - 112,except that we want b = O if 
N = M !  In other words, we set b = 1M NN]. Then, if b _< b,, the number of 
almost-squares up to N is B(M 9- b, while if b > bM,the number of almost-squares 
u p t o N i s B ( M " - b , - 1 .  -

In the other case, where N IM( M - I), we want to find the positive integer n 
such that (M - n - l)(M + a) IN < ( M  - a)(M + n - l ) ,  exce t that we want n = 0 

if N = M(M - 1). In other words, we set a = 1d( M  - 1/2) -N + 1/21, Then, if 
a I a,v,, the number of almost-squares up to N is B(M 9- b,,, - 1- a, while if 
a > a,v,,the number of almost-squares up to N is B((M - 1)'). This shows that A(N) 
can be computed in polynomial time, which establishes part (c) of the corollary. 

Suppose now that we want to compute the Nth almost-square. We coinpute in any 
way we like the first C almost-squares, where C is as in Lemma 8; this only takes a 
constant amount of time (it doesn't change as N grows) which certainly qualifies as 
polynomial time. If N _< C then we are done, so assume that N > C. Let M = 1z, 1, 
where z, is defined as in Lemma 8(b), so that M is at least 3 by the definition of C. 
By Lemma 7, 

A(M" = B(M2) 2 B ( z i )  > N  and A((M-2)" = B((M- 2 1 ~ )< B((z,- 1)" <<, 

where the last inequality in each case follows from Lemma 8(b). Therefore the Nth 
almost-square lies between ( M  - 2)2 and M 2,  and so is either in the 2 M-th flock or 
one of the precedng three flocks. If O I B( M ') -N I b,,, , then the Nth almost-square 
is in the 2 M-th flock, and by setting b = B(M2)-N we conclude that the Nth 
almost-square is ML b2 and the &inensions of the optimal rectangle are ( M  - b) X 
( M  + b). If 1+ b,, I B( M') -N I b,, + 1+ a,, , then the Nth almost-square is in 
the (2M - 1)-st flock, and so on. This establishes part (d) of the corollary. 
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Finally, we can determine the greatest almost-square not exceeding N by comput-
ing J =A ( N )  and then computing the Jth almost-square, both of which can be done 
in polynomial time by pasts (c) and (d); and we can determine whether N is an 
almost-square simply by checking wllether this result equals N. This establishes the 
corollary in its entirety. 

7. Final filibuster 

We have toured some very pretty and precise properties of the almost-squares, and 
there are surely other natural questions that can be asked about them, some of which 
have already been noted. When Grantham posed this problem, he recalled the 
common variation on the original calculus problem where the fence for one of the 
sides of the rectangle is more expensive for some reason (that side borders a road or 
something), and suggested the more general problem of finding the inost cost-effec-
tive rectangle with integer side lengths and area at inost N ,  where one of the sides 
must be fenced at a higher cost. This corresponds to replacing s(n) with the more 
general function s,(n) = inin,, , ,,(d + a n/rl), where a is some constant bigger than 1. 
While the elegance of the characterization of such "a-almost-squares" might not 
match that of Corollary 1,it seems reasonable to hope that an enumeration every bit 
as precise as the Main Theorem would be possible to establish. 

How about generalizing this problem to higher dimensions? For example, given a 
positive integer N ,  find the dimensions of the rectangular box with integer side 
lengths and volume at most N whose volume-to-surface area ratio is largest among all 
such boxes. (It seems a little more natural to consider surface area rather than the sum 
of the box's length, width, and height, but who knows which problem has a more 
elegant solution?) Perhaps these "almost-cubes" have an attractive characterization 
analogous to Corollary 1;almost certainly a result like the Main Theorem, listing the 
almost-cubes in order, would be very complicated. And of course there is no reason to 
stop at dimension 3. 

In another direction, intuitively it seems that numbers with many divisors are more 
likely to be almost-squares, and the author thought to test this theory with integers of 
the form n!. However, computations reveal that the only values of n 5 5 0 0  for which 
n! is an almost-square are n = 1,2,3,4,5,6,7,8,10,11,13,15.Is it the case that these 
are the only factorial almost-squares? This seems like quite a hard question to resolve. 
Perhaps a better intuition about the almost-squares is that only those numbers that lie 
at the right distance from a number of the form m2 or m(m - 1) are almost-squares 
-more an issue of good fortune than of having enough divisors. 

Readers are welcome to try for themselves the Mathematica code used to cal-
culate the functions related to almost-squares described in this paper; see 
http :// www .maa .org / pubs / m~supplements/ index.1 . With this 
code, for instance, one can verify that with 8,675,309 square feet of land at his 
disposal, it is most cost-effective for Farmer Ted to build a 2,919' X 2,972' 
supercoop.. . speaking of which, we almost forgot to finish the Fariner Ted story: 

After learning the ways of the almost-squares, Farmer Ted went back to Builders Square, where the 
salesman viewed the ariival of his R-rival with trepidation. But Farmer Ted reassured hiin, "Don't 
worry-I no longer think it's inane to measure fences in N." Froin that day onward, the hvo 
developed a flourishing business relationship, as Fariner Ted became an integral customer of the 
store. 

And that, according to this paper, is that. 
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Proof Without Words: 

The Difference Identity for Tangents 


/3 tan a 

A C - A B = B D + D C  
'. tan a - tail p = t an(a  - P )  + tan a tail p tan(a  - p )  

tan a - tan p 
t a n ( a @ ) =  l + t a n a t a n P  


