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In most elementary courses that include a discussion of infinite series, the instructor states 
and sometimes proves Riemann's theorem, "A conditionally convergent series can be rearranged 
to sum to any real number." However, after presenting this theorem, even in an advanced 
calculus or elementary analysis course, the instructor may get the uneasy feeling that the point 
of the theorem has been lost, that the issues involved are too subtle for students still afraid of 
infinite series. Perhaps some examples would be helpful-that is the point of this note. We 
calculate, explicitly, the sums of rearranged alternating harmonic series for a large class of 
rearrangements. More important, we give an example of a rearrangement that can be summed 
for freshman calculus students and a technique for adding such series that can be the basis of a 
set of exercises for more advanced students. The results presented here are old (1883) results of 
Pringsheim (131, or see [I, pp. 74-77], 12, pp. 96-98], or 15, p. 25]), but they are not as well known 
as they should be. 

By the alternating harmonic series, we mean the series 

whose sum is ln2. We say that a series is a simple rearrangement of an alternating series if it is a 
rearrangement of the series and the subsequence of positive terms and the.subsequence of 
negative terms are in their original order. For example, 

is a simple rearrangement of the alternating harmonic series whereas 

is not. If Z?=.',,ak is a simple rearrangement of the alternating harmonic series, let p, be the 
number of positive terms in {a,, a,, ...,a,,) and let a denote the asymptotic density of the positive 
terms in the rearrangement. That is, a =lim,,,p,/n, if the limit exists. Thus, a =f for the 
unrearranged alternating harmonic series and a =3 for rearrangement (1) above. 

THBORBM1 131. A simple rearrangement of the alternating harmonic series converges 
to an extended real number if and only if a, the qmptotic density of the positive term 
in the rearrangement, exists. Moreover, the sum of a rearrangement with density a is 
1112 + iln(a(1- a)-'). 

We shall give a short proof of this theorem below, but first we work out some special cases in 
a more naive way. 

The simplest example of adding a rearrangement is attributed by Manning to Laurent 12, 
page 981. Laurent's rearrangement is 
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where a = f. One easily justifies inserting parentheses to get 

so the sum of series (2) is iln2. The trick of inserting parentheses makes this an attractive 
example, but generalizing it to find sums of other rearrangements is more difficult. 

Rearrangement (1) can be handled using power series in the same way that one uses the 
Taylor series for ln(1 +x) to show X?-,(- l)k+lk-'=ln 2. Let 

Elementary estimates show that series (1) converges and we conclude by Abel's theorem [4, 
Theorem 8.2, page 1601 that its sum is lim,,,-f(x). Since 

the sum of rearrangement (1) is Zln2. More generally, this technique works for rearrangements 
in which blocks of n positive terms alternate with blocks of m negative terms. For this case one 
uses 

Computations of this sort make interesting exercises because their rigorous analysis requires 
several standard techniques from the theory of power series. (In fact, it is possible to prove 
Theorem 1 from this by noting that the sum of a rearrangement is an increasing function of the 
asymptotic deasity a,) 

Proof of Theorem I. Suppose ZT-, a, is a simple rearrangement of the alternating harmonic 
series. Let p,, be as above and q,, =n -p, so that 

For each positive integer n, let En=&",,k-') -lnn. The sequence (En),", , is a decreasing 
sequence of positive numbers whose limit y is called Euler's constant. 

Now 

and 

Thus 

That is, the series converges iff the limit on the right, which is ln2 +tln(a(1 -a) - I ) ,  exists. 
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W e  have seen that the sums o f  rearrangements o f  the alternating harmonic series depend only 
on the asymptotic density a. This behavior is in some sense specific to series like the harmonic 
series, as Theorem 2 indicates. Readers are invited to construct proofs for themselves or to 
consult Pringsheim's paper [3]. 

THEOREM is a sequence of real numbers such that lull > la21> la,[ > . . . ,2 [3]. Suppose {an]?- '-, 
limn,,an =0, and a,,-, >O>a2, for k =1,2,3,. . . . 

(i) If limn,,nlanl = w, and i f  S is a real number, there is a simple rearrangement of the series 
xp-,ak with asymptotic density whose sum is S.  

(ii) If limn,, nu, =0, i f  xp- ,b, is a simple rearrangement of the series xp- for which the 
a~ymptotic density a exists, and i f  0<a < 1 ,  then xr- ',,bk=xp- ',,ak. 
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A STRONG CONVERSE TO GAUSS'S MEAN-VALUETHEOREM 
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The theorem o f  Gauss in the title affirms that 

holds for all a in a region D, all r >0 such that the closure o f  the disc D(a,r) = { z  EC :It -a1 <r] 
lies in D, and all functions h that are harmonic throughout 3. Most books on function theory or 
potential theory prove this elementary result as well as the following converse due to Koebe [4]: 
If h is continuous in the region D and ( 1 )  holh for aN a and r such that E(a,r)cD,  then h is 
harmonic in D. In fact, the somewhat stronger version in which the equality is required to hold 
only at each a for some sequence rn(a)+O is often proved. What does not seem to be well known 
is that, when h is continuous on a, one radius suffices. This strong converse o f  Gauss's theorem 
is due to Kellogg [3] and is not trivial. However, for Dirichlet regions this strong converse is as 
easy to prove as Koebe's theorem and should be presented in elementary texts. The theorem for 
Dirichlet regions is due to Volterra [7] (with a supplemental hypothesis) and to Vitali [qywhere 
the supplemental hypothesis is removed). Here is their proof in modem dress, presented in 
dimension two, though the reader will see that it is valid in any dimension. 

LEMMA. Let U be a bounded open subset of the complex plane C and let f:  0-R be continuous 
and for each a E U have the following restricted mean-value property: 

I,f(a + re")dO for some r = = 
1
 2' 

f (a )  r(a)>0 such that D(a ,  r )  c U. (2)  


Then maxf(o)=maxf(aU). 


Proof. (Cf .  Cimmino [ I ] )  Let M=maxf(U). It suffices to see that the closed subset f - ' (M)  o f  



