[Top] VSFCF - CVM 1.1 [Respond][Find][Help]


[Ba] Michael Barnsley, Fractals Everywhere, Academic Press, Inc., Boston, 1988.
[Ca] G. Cantor, "Ueber unendliche, lineare Punktmannichfaltigkeiten", Math. Ann., 1883 (21), pp. 545-591.
[Ed] Gerald A. Edgar, Measure, Topology, and Fractal Geometry, Springer-Verlag, New York, 1990.
[Ew] John Ewing, "Can We See the Mandelbrot Set?", The College Mathematics Journal, 1995 (26), pp. 90-99.
[Fa] K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, Cambridge, 1985.
[Hi] David Hilbert, "Über die stetige Abbildung einer Linie auf ein Flächenstück", Math. Ann., 1891 (38), pp. 459-460.
[HY] John G. Hocking and Gail S. Young, Topology, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1961.
[Hu] John E. Hutchinson, "Fractals and Self Similarity", Indiana University Mathematics Journal, 1981 (30), pp. 713-747.
[Ko] Helge von Koch, "Une méthode géométrique élémentaire pour l'étude de certaines questions de la théorie des courbes planes", Acta Mathematica, Stockholm, 1906 (30), pp. 145-174.
[Le] H. Lebesgue, Leçons sur l'Intégration et la Recherche des Fonctions Primitives, Gauthier-Villars, Paris, 1904, pp. 44-45.
[Ma1] Benoit B. Mandelbrot, Les Objects Fractals: Forme, Hasard et Dimension, Flammarion, Paris, 1975.
[Ma2] __________, The Fractal Geometry of Nature, revised edition, W. H. Freeman and Company, New York, 1983.
[Me] Mark D. Meyerson, "Projections of Cantor Sets, Simple Closed Curves, And Spheres in E3", The Rocky Mountain Journal of Mathematics, 1976, (6), pp. 305-320.
[Mo] E. H. Moore, "On certain crinkly curves", Trans. Amer. Math. Soc., 1, (1900), pp. 72-90.
[Os] W. F. Osgood, "A Jordan curve of positive Area", Trans. Amer. Math. Soc., 4 (1903), pp. 107-112.
[Pe] G. Peano, "Sur une courbe, qui remplit toute une aire plane", Math. Ann. 36 (1890), pp. 157-160.
[PR] H.-O. Peitgen and P. H. Richter, The Beauty of Fractals, Images of Complex Dynamical Systems, Springer-Verlag, Berlin, 1986.
[Ro] H. L. Royden, Real Analysis, Second Edition, Macmillan Company, London, 1968.
[Sag] Hans Sagan, Space-Filling Curves, Springer-Verlag, New York, 1991.
[San] James Sandefur, "Using Self-Similarity to Find Length, Area, and Dimension", The American Mathematical Monthly, February 1996 (103), pp. 107-120.
[Si] W. Sierpinski, "Sur une nouvelle courbe continue qui remplit toute une aire plane", Bull. Acad. Sci. de Cracovie (Sci. math. et nat., Série A) (1912), pp. 462-478.
[WL] Wang Fuquan and Li Houqiang, "The Properties of the Curve Having Area and its Generalizations of Higher Dimension", Journal of Mathematical Research and Exposition, 1994 (14), pp. 579-584.
[Wu] W. Wunderlich, "Irregular Curves and Functional Equations", Ganita (Proc. Benares Math. Soc.) 1954 (5), pp. 215-230.

[Top] Table of Contents

Communications in Visual Mathematics, vol 1, no 1, August 1998.
Copyright © 1998, The Mathematical Association of America. All rights reserved.
Created: 17 Aug 1998 --- Last modified: Sep 30, 2003 4:59:30 PM
Comments to: CVM@maa.org