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In 1638, Francis Godwin’s story The Man in the Moone was published. In that story an
astronaut harnesses a wedge of 25 swans, as suggested in Figure 1(a) [3, plate facing
p- 118], and flies to the moon. The swans fly at a constant rate and always head toward
the moon, in accordance with their annual migration. Thus, the trajectory from the
earth to the moon is not a straight line, but is a pursuit curve as shown in Figure 2. In
the story, Godwin says that the flight to the moon takes twelve days, whereas the return
trip, which follows a straight line, takes eight days. How good a guess was Godwin’s?

(a) via a wedge of swans (b) via a flock of wild birds

Figure 1. Space travel.

We use a little calculus to determine the consistency of these flight times. We also
explore some popular fancies regarding motion from the literature of yesteryear.

A little history

Let’s put Godwin’s guess into historical context, and compare it with some other
guesses. In each of the following narratives, unless otherwise stated, the tacit assump-
tion is that the return trip is as long as the outbound trip.

Lucian, in the comic satire The True History, written in 174 AD, describes a ship
whirled aloft by a waterspout, whereafter it sails eight days to the moon. In 1300,
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Dante travels through the solar system in The Divine Comedy. Together with his guide
Beatrice, they leave earth from a mountaintop, and fall upwards. To describe their
speed, Beatrice says to Dante,

For lightning ne’er ran, as thou hast hither, [Paradisio, canto i].

In a matter of minutes, they arrive on the moon. Around 1610, Johannes Kepler wrote
The Dream, in which a hero is transported by a force field to the moon in four hours.
Around 1630, Galileo calculated that a ball would fall from the moon to the earth
in 3 hours, 22 minutes, and 4 seconds [5, p. 224]. In 1640, John Wilkins, the first
secretary of the Royal Society, anticipated that a manned moon trip would last 180
days. In 1656, in Voyage to the Moon, Cyrano de Bergerac, famous for his long nose
and his swordsmanship, initially launching a fictional version of himself in a winged
contraption powered by fireworks, travels there and back, each leg lasting several days.
In 1835, in The Adventures of Hans Pfaall, Edgar Allan Poe describes a two-week-
long moon voyage in a balloon inflated with gas “37.4 times lighter than hydrogen.”
In 1870, in Round the Moon, Jules Verne describes a round-trip projectile shot to the
moon, each leg lasting four days. In 1901, in The First Men in the Moon, H. G. Wells
describes an anti-gravity moon flight of a few days with a return trip lasting several
weeks. In 1968, Apollo 8, the first manned craft to circle the moon, reached the moon
in 3.5 days, and returned in 2.5 days.

swans land on moon
at t=12 days

® moon at

i t=0
| swans on earth !

S0 at t=0 ,

Figure 2. The trajectory from the earth to the moon.

Godwin (1562-1633), an Anglican bishop, is primarily known as a church historian.
He wrote his moon story around 1599, and circulated it privately among friends—the
story builds on Copernican theory, and publication would have caused him needless
controversy. He chose a Spanish background for his astronaut, Domingo Gansales,
so as to to be in the spirit of the Spanish discovery of America under Columbus a
hundred years earlier. After Godwin died, a friend published the story anonymously.
It went through many printings in the next two centuries and inspired similar stories.
For example, in The Little Prince, a classic children’s story, the Little Prince leaves his
planet for earth by harnessing a flock of birds, as shown in Figure 1(b) [4, p. 2].
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With respect to the swans flying through the heavens, Domingo and the swans start
their journey from a mountaintop, just as in Dante’s story. For the first few moonward
miles, the birds strain at transporting Domingo. But thereafter, earth’s pull of gravity
vanishes. The birds have an easy time until just before landing on the moon, when
gravity again becomes an observable phenomenon.

Domingo’s trajectory to the moon is a pursuit problem, a puzzle with a long tradition
going back to Zeno’s mythic race of Achilles overtaking the tortoise. The earliest Latin
version of the problem dates to the court of Charlemagne, where the scholar Alcuin
collected some mathematical conundrums to sharpen young minds. The 26th of these
reads,

There is a field which is 150 feet long. At one end stood a dog, at the other a
hare. The dog advanced to chase the hare. Whereas the dog went nine feet per
stride, the hare went seven. How many feet and how many leaps did the dog take
in pursuing the fleeing hare until it was caught? [10]

Figure 3. Reynard the Fox in pursuit of the rabbit, drawn by J.J. Mora (1901).

Later versions of this recreational math problem vary the nature of the pursued and
the pursuer. Figure 3 shows a fox chasing a hare, from the epic satirical poem Rey-
nard the Fox of 1483 [1, plate facing p. 94]. A popular renaissance version includes
couriers overtaking one another on roads between various Italian cities [11, p. 70].
The first to apply Newton’s calculus to pursuit problems was Pierre Bouguer in 1732,
who imagined a privateer overtaking a merchant ship on the high seas [2, p. 91]. More
recent versions have a fighter plane overtaking a bomber and a missile overtaking
a jet and the space shuttle overtaking the Hubble Telescope. Solutions to Bouguer’s
problem appear in many differential equations texts such as Simmons [9, pp. 42-44].
In particular, a rabbit, initially at the origin, runs along the y-axis at constant speed
a while pursued by a fox, initially out along the x-axis, who always runs towards
the rabbit at constant speed b. The fox’s path towards the rabbit is called a tractrix,
and, if b > a, the fox eventually overtakes the rabbit. Much information about pur-
suit curves can be found on the web (for example, http://mathworld.wolfram.
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com and the National Curve Bank site at http://curvebank.calstatela.edu/
pursuit/pursuit.htm).

Pierre-Louis Moreau de Maupertuis is credited with generalizing the pursuit prob-
lem in 1735, so that the pursued can follow paths other than straight lines. In fact, the
pursuit problem of Maupertuis commonly refers to the pursuit problem when the pur-
sued travels along a circular arc. Versions of his problem have appeared several times
in early volumes of the American Mathematical Monthly, including this:

A dog at the center of a circular pond makes straight for a duck which is swim-
ming along the edge of the pond. If the rate of swimming of the dog is to the
rate of swimming of the duck as n is to 1, determine the equation of the curve of
pursuit and the distance the dog swims to catch the duck.

Summarizing their limited success at solving this problem in the first volume of the
Monthly in 1894, one of four solvers concluded that the problem solution “transcends
the present limits of mathematical genius” [2]. In 1921, Hathaway [6] and Morley [8]
gave detailed approximate solutions to the duck-and-dog problem. We use a similar
approach in presenting a solution to Godwin’s problem, and add a new twist in that,
contrary to the terrestrial problem, the celestial one involves both the pursued and the
pursuer rotating about a common center in good Copernican fashion.

An earth-moon model of the journey

To model Domingo’s flight, position the earth at the origin, O. Assume that the moon
orbits the earth counterclockwise in a circle with period p = 27.3 days and radius
D = 1 lunar unit (LU), where 1 LU =~ 384,000 km. We take p as the sidereal period
(the period with respect to the fixed background of stars) of 27.3 days rather than the
synodic period (the period with respect to the sun) of 29.5 days. Figure 4 shows the
geometry of these two terms. (In 29.5 days, the moon goes around a circle of one lunar
unit about 1.08 times.)

h 3
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\
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moon orbit about earth \ earth
“ orbit

Figure 4. Sidereal versus synodic moon periods.
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Assume that at time ¢ = 0, the moon is at (1, 0). The center of the moon at any time
is given by

M) = (M (1), M>(t)) = <COS @, sin @) . (D)

p p
In terms of lunar units, earth’s radius is R ~ 0.0167, and the moon’s radius is r ~
0.00453 (since the earth and moon radii are about 6400 km and 1738 km, respectively).
Let x(¢#) and y(#) denote Domingo’s position along his trajectory at time . Assume
that at + = 0, Domingo and his wedge of swans are on the earth’s surface at (R, 0).
Since the swans always fly in the direction of the moon, these directions are also the

directions of the trajectory’s tangent line at each moment. Routine computation gives
the differential equation system

My —y)x' = (M, —x) Yy,
{ p | @

() + () = ¢

Thus, one way to generate Domingo’s pursuit curve to the moon is to solve (2), along

with the initial condition (x(0), y(0)) = (R, 0). This system is valid until the swans
reach the surface of the moon.

1'. moon
swans head to , at t=0
moon from

earth

Figure 5. A hopeless quest, ¢ = 0.15 lunar units/day.

As long as the swans’ cruising speed ¢ exceeds the speed k of the moon, the swans
will ultimately reach the moon. However, if ¢ < k, their trajectory will asymptotically
approach a circle with center O and radius p = cp/(2m). For example, as shown in
Figure 5 with ¢ = 0.15, the swans initially get about three-fourths of the way to moon
orbit before falling back into a circular orbit about half-way to the moon. In particular,
the asymptotic solution to (2) for any initial condition with ¢ < k (except of course
when the swans are already on the moon) is

2t . (27t
x@®),y@®)=p (cos (7 + 9) , sin (7 + 9)) , 3)

where 0 is the phase angle cos™!(p/D). As can be verified, (3) satisfies (2).
To see why (3) is a solution, see Figure 6. The swans at s see the moon at m. Since
the periods of the moon and the swans are the same, the tangent lines to the inner circle
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Figure 6. Finding the phase angle.

at the swans’ position always go through the moon. Thus the phase angle between (1)
and (3) is 6 for all .

Because standard numerical routines in a typical CAS may have difficulty when
x" or y’ is zero and because (2) ambiguously describes the motion of the swans as
going away from the moon as well as towards it, we use a two-variable form of Euler’s
method that generates valid trajectories. The graphs of Figures 2 and 5 were generated
in this way. Allow the swans to alter their direction every Af time units. Letz, = n At,

where 7 is a positive integer. Suppose that Domingo is at position (x,, y,) at time #,.
The direction of the swans’ flight is thus

(X, Y) = (Ml([n) — Xn, MZ(tn) - yn)-

Let § = /X2 + Y2 Then (X, Y)/§ is the unit vector in the direction in which the
swans fly. Their velocity is therefore (X, Y)c/§. The changes in the coordinates of
Domingo’s position from #, to ,,,; are Ax = c X At/§ and Ay = cY At/5. Let

(xn-H, yn+l) = (xn + Ax, Yo + Ay) (4)

Iterate (4) until § is less than r, the radius of the moon. Then draw a path through the
pOintS (xrn )’n)
Here is a Mathematica procedure that implements these ideas.

swan[At_, c_]:= Block[{x,y, X, Y, §, 1, bag, flag},
x=R; y=0; bag={{x, y}}; flag=True; t=0;
While[flag, X=M, [t]—x; Y=M,[t]—y;
8 =+/X2+YZIf[(5 <r) || (t>100), flag=False];
X=x+X C Al/§; y=y+Y ¢ Al/§; t=t+At; bag=Append[bag, {x, y}1I;
Print["there: " t," days, back: ",(1-R-r)/c," days"];
ListPlot[bag, PlotJoined— True, AspectRatio— Automatic]];

When using swan, the step-size Az should be chosen so that ¢ At < r to ensure
that the swans do not overshoot the moon. Furthermore, procedure swan ceases when
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it generates a point within r units of the moon’s center (since the trip is successful
once the swans reach the moon’s surface) or if time ¢ exceeds 100 days (a cut-off
time chosen for convenience). The penultimate line in Swan generates a text message
giving the times to the moon and back again.

With R, r, p, M,[t], and M;[t] already defined, using swan[0.01, 0.2508] generates
Figure 2 with a flight time of 12.01 days, (for a speed of ¢ = 0.2508 LU/day), and
a return flight time of 3.90 days, rather than Godwin’s estimate of 8 days. In general,
the duration of the return flight is (1 — R — r)/c. Furthermore, as ¢ increases from
k, the ratios of the time lengths of there and back again decrease from oo to 1, as
illustrated in Figure 7. This graph should make intuitive sense, because as the swans’
speed increases, their trajectory to the moon approaches a straight line, whereas if their
speed is close to k, their trajectory spirals in multiple loops that converge towards the
circle of the moon’s orbit.

35¢f
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15¢

Ratio of there and back again

05¢

0.25 03 0.35 04 0.45 05
swan speed (LU/day)

Figure 7. The ratio of travel times to the moon and back again.

A sun-earth-moon model of the journey

Since Godwin describes himself as a Copernican—*I joyne in opinion with Coperni-
cus” [7, p. 21]—Ilet’s see if adding the sun into the model affects the journey lengths
to the moon and back. This time, let the sun be at the origin. Assume that the earth
moves around the sun in a circle with period ¢ = 365 days and radius Q = 390.625
LU, since the earth is about 150,000,000 km from the sun. Then the center of the earth
is at

2wt . 27wt
G(t) = (G1(t), GL(t)) = 0 (cos 7, sin 7) .

In order to explore more fully the possible range of trajectories to the moon and back
in the sun-earth-moon model, we let the center of the moon be at

p, Ty = (ui@,T), pa(t, 7)) = G@&) + Mt + T), 4)
where 0 < T < p. In this model, the speed of the earth with respect to the sun is

K =2 Q/q ~ 6.72 LU/day, while the speed of the moon with respect to the sun is
not constant, fluctuating slightly above and below K. As long as the swans fly faster
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than K + k with respect to the sun, they will reach the moon. When the trajectory of
Domingo from the earth to the moon is plotted using (5) rather than (1), the graph
appears to be an arc of the earth’s orbit about the sun because Q is much larger than
D. Therefore, rather than plot the points generated with the sun at O, we graph the
points as they would appear from earth by subtracting G(¢) from the point generated
at time 7. Figure 8(a) shows a 12-day apparent trajectory from earth when the swans
fly at ¢ = 6.817 LU/day leaving the earth at midnight, that is, when the sun, earth,
and moon, initially in that order, are on the non-negative x-axis and the swans are at

position (Q + R, 0).
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(a) Apparent earth-to-moon trajectory. (b) Apparent moon-to-earth trajectory.

Figure 8. Apparent trajectories.

At first glance, this trajectory may appear to be counter-intuitive since the curve
goes down and to the right rather than up and to the right, as might be expected.
But let’s consider the first iteration. Because of the alignment of the earth and the
moon, the y-coordinate of Domingo’s position remains at 0. Meanwhile, the earth has
moved so that its y-coordinate at time At is positive. It follows that the y-coordinate
of Domingo’s apparent position is negative rather than positive.

To implement these dynamics, we modify swan to be swan2 with four parameters,
where 0 is the initial polar angle of the swans’ position with respect to the earth, T is
a phase shift of the moon, Af is a time step, and ¢ is the swans’ speed. For various
combinations of 6 and T, the swans may initially be unable to see the moon, such as

whenf® =0and T = p/2.

swan2[6_,T_,At_, c_]:= Block[{x, y, X, Y, §, t, bag, flag},
x=Q+R Cos[6]; y=R Sin[#]; bag={{x-G[0], y-G,[0]}}; flag=True; t=0;
While[flag, X=p1[t, T]—X; Y=w,[t, T]-V;
8 =+/X*+ Y% (8 <r) || (t>100), flag=False];
X=X+X C At/§; y=y+Y c Atl/S; t=t+At;
bag=Append[bag, {x-Gi[t], y-Ga[t]}]];
Print["there: ",t," days"];
ListPlot[bag, PlotJoined— True, AspectRatio— Automatic]];

As before, with R, r, p, Q, G{[t], G,[t], u [t], u-[t] already defined, swan2[0, O,
0.001, 6.817] generates Figure 8(a).

When Domingo returns to earth, the swans always fly toward the earth. However,
unlike in the earth-moon model of the last section, now the earth is moving. A slight
modification of swan2 enables us to generate return trajectories:
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swan3[6_,T_,At ,c ]:= Block[{x, y, X, Y, é, t, bag, flag},
x=11[0, T]+r Cos[0]; y=u,[0, T]+r Sin[6];
bag={{x-G:[0], y-G,[0]}}; flag=True; t=0;
While[flag, X=G[t]—x; Y=G,[t]-y;
8§ =+/X2+ Y% I[(5 <R) || (t>100), flag=False];
X=X+X C At/8; y=y+Y c A/S; t=t+At;
bag=Append[bag, {x-Gi[t], y-G.[t]}]];
Print["back: ",t," days"];
ListPlot[bag, PlotJoined— True, AspectRatio— Automatic]];

The apparent trajectory to the earth given by swan3[n/3, —11.27,0.001,6.817] is

shown in Figure 8(b), which corresponds to the earth’s center being initially at (Q, 0),
the moon at phase T = —11.27 days, the swans at polar angle 0 = 7r/3 with respect
to the moon, and ¢ = 6.817 LU/day. This time, Domingo’s return trip lasts 8.00 days.
So Godwin’s guess was good, at least for this choice of parameters.

A few more pursuit questions

Here are a few problems to try.

Another way to attack Godwin’s consistency problem of 12 versus 8 is to focus on
the number of swans in the wedge. In the story, two swans die on the moon, so that
Domingo’s wedge has 23 swans on the return trip. Develop a model between wedge
speed and swans in the wedge, so that in the earth-moon model, 12 and 8 days are
consistent times for the trip to the moon and back.

In the sun-earth-moon model, for a given positive number A, find trajectory pairs so
that the ratio of flight times to the earth and the moon is A. For a given value of c,
find the optimal A values.

Imagine that the Little Prince’s asteroid B-612 pictured in Figure 1(b) is in the aster-
oid belt of our solar system; plot trajectories of the Little Prince’s flight to the earth
and home again for various speeds ¢ and configurations of the earth and B-612.

Acknowledgment. Copyright permission for Figure 1(b) from Harcourt.
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