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A Geometric Series from Tennis
James Sandefur (sandefur@georgetown.edu), Georgetown University, Washington,
DC 20057

During the Wimbledon tennis finals, the commentator mentioned that one of the
players was winning 60% of his points on serve. I began wondering what fraction of
the games a person should win if the probability of winning any particular point was p.
In answering this question, I used some basic probability and summed a geometric
series. Others might want to share this with their students.

As a reminder, the winner of a game is the first person to score 4 points, unless the
game reaches a 3-to-3 tie. Then it continues until someone goes ahead by 2. (The four
points are called 15, 30, 40 and game, by the way.)

Assume that the probability that player A wins a point is p. The probability that
player A wins the game within the first 6 points is the probability that A leads by a
score of 3-to-0, 3-to-1, or 3-to-2, and then wins the next point, which is[(

3

0

)
p3 +

(
4

1

)
p3(1 − p) +

(
5

2

)
p3(1 − p)2

]
p = p4(15 − 24p + 10p2),

after simplification. If neither player has won by the 6th point, then the score must be
tied at 3-to-3. The probability of a 3-to-3 tie is(

6

3

)
p3(1 − p)3 = 20p3(1 − p)3.

After that, the game must be won after an even number of points. The probability of
winning on the 8th point is the probability of a 3-to-3 tie, followed by winning the next
two points, which is

20p3(1 − p)3 p2.

The probability of winning on the 10th point is the probability of a 3-to-3 tie, splitting
the next two points, and then winning the 9th and 10th points, which is

20p3(1 − p)3
[
2p(1 − p)

]
p2.
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More generally, the probability of winning on the (2n + 6)th point is the probability of
a 3-to-3 tie, 20p3(1 − p)3, splitting each pair of the next 2n − 2 points [2p(1 − p)]n−1,
and then winning the last 2 points p2, which is

20p3(1 − p)3
[
2p(1 − p)

]n−1
p2.

Thus, the probability of A’s winning the game is

f (p) = p4(15 − 24p + 10p2) + 20p3(1 − p)3 p2
∞∑

n=0

[
2p(1 − p)

]n
.

Summing the geometric series gives the function

f (p) = p4(15 − 24p + 10p2) + 20p5(1 − p)3

1 − 2p(1 − p)
,

whose graph is shown in Figure 1.
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Figure 1. Graph of probability function f of winning a game as function of the probability p
of winning a point.

The answer to my original question is that players who win 60% of their points on
serve will win f (0.6) ≈ 0.74 or about 74% of their service games.

The graph suggests that f has rotational symmetry about the point (0.5, 0.5), al-
though this is not apparent from the form of f . We can verify the rotational sym-
metry by noting that if q is the probability that the second player wins a point, then
f (q) gives the probability that the second player wins the game. But p + q = 1, so
f (q) = f (1 − p). Since one of the two players must win, f (p) + f (1 − p) = 1. If
we take p = 0.5 + x and g(x) = f (0.5 + x) − 0.5, we find that

g(x) + g(−x) = f (0.5 + x) + f (0.5 − x) − 1 = f (p) + f (1 − p) − 1 = 0,

so g(−x) = −g(x). Thus, g is an odd function, and hence f has rotational symmetry.
From the graph, it also appears that there is a point of inflection at p = 0.5. It would

be tedious to check that f ′′(0.5) = 0. However, if we remember the derivation

f ′′(x) = lim
h→0

f (x + h) + f (x − h) − 2 f (x)

h2
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and apply that to g(x), we see that

f ′′(0.5) = g′′(0) = lim
h→0

g(h) + g(−h) − g(0)

h2
= lim

h→0

0

h2
= 0,

which shows that p = 0.5 gives a point of inflection. This means that players gain the
most in the number of games they win by increasing p when p ≈ 0.5. In other words,
if you are a weak or a strong player relative to your opponent (p small or large), then a
small improvement in your serve (increasing p) doesn’t result in as much improvement
in the number of games you win as an improvement against a comparable opponent
(p about 0.5) does. A simple computation shows that f ′(0.5) = 2.5, so a 1% gain in
p will result in about a 2.5% increase in your likelihood of winning a game.

◦

On Sums of Cubes
Hajrudin Fejzić (hfejzic@csusb.edu), Dan Rinne (drinne@csusb.edu), and Bob Stein
(bstein@csusb.edu), Department of Mathematics, California State University, San
Bernardino, CA 92407

A well-known identity for the sum of the first n cubes is

13 + 23 + · · · + n3 = (1 + 2 + · · · + n)2. (1)

Some of our students noticed that, curiously, equality still holds if n − 1 is replaced
by 2, that is

13 + 23 + · · · + (n − 2)3 + 23 + n3 = (1 + 2 + · · · + (n − 2) + 2 + n)2 .

This observation led us to ask whether other such switches are possible. In this note,
we investigate those triples (k, m, n) for which

k−1∑
j=1

j3 + m3 +
n∑

j=k+1

j3 =
(

k−1∑
j=1

j + m +
n∑

j=k+1

j

)2

. (2)

Clearly (2) holds (because of (1)) if m = k, so in what follows we assume m �= k.

Furthermore, as our students pointed out, (n − 1, 2, n) is a solution for every n ≥ 2.

Do other solutions exist, and if so, do they fit nice patterns? Our inquiry led us to some
interesting and unexpected answers, and ultimately to a connection with an unsolved
problem in number theory.

Our first result gives a necessary and sufficient condition for a triple (k, m, n) to be
a solution of (2). (We assume that k and m are positive integers not exceeding n.)

Theorem 1. A triple (k, m, n) with m �= k satisfies (2) if and only if either

(a) k = n − 1 and m = 2, or
(b) there exists an integer p ≥ 2 and a positive divisor s of 3p(p − 1) for which

(k, m, n) =
(

2(p − 1) + 3(p − 1)p

s
, 2p + s, m + k − p

)
. (3)

Furthermore, different pairs (p, s) yield different solutions.
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Proof. If we rewrite (2) as

n∑
j=1

j3 + m3 − k3 =
(

n∑
j=1

j + (m − k)

)2

.

and square the right side, then using (1) we deduce that

(m3 − k3) = n(n + 1)(m − k) + (m − k)2.

Since we assumed that m �= k, it follows that (2) is equivalent to

m2 + km + k2 = n(n + 1) + (m − k). (4)

By rewriting this as (m + k)2 = n2 + m (k + 1) + n − k, we see that since k ≤ n, we
must have m + k > n. Let p = m + k − n. Substituting n = m + k − p into (4) and
simplifying, we get

(p − 1)(2m − p) = k(m − 2p). (5)

We consider two cases:
Case 1. p = 1. In this case, it follows from (5) that m = 2 and so we have the triple

(n − 1, 2, n).
Case 2. p ≥ 2. From (5) it follows that m �= 2p and

k = (p − 1)(2m − p)

m − 2p
.

Suppose m − 2p < 0. Then 2m − p < 0 since k > 0. Thus 2m < p = m + k − n so
n < k − m, which is a contradiction since 1 ≤ m, k ≤ n. Hence m > 2p. We rewrite
k as

k = 2(p − 1) + 3p(p − 1)

m − 2p
.

From this we see that s = m − 2p divides 3p(p − 1) since k is an integer. Therefore,
for p ≥ 2, (k, m, n) satisfies (4) if and only if

k = 2(p − 1) + 3p(p − 1)

s
, m = 2p + s, and n = m + k − p

for some positive s of 3p(p − 1).
Finally, from p = m + k − n we see that different values of p produce different

triples (k, m, n) and if p is fixed, then different divisors s of 3p(p − 1) yield different
values of m.

We now look further at solutions of type (b) in the theorem, which states that when-
ever there are positive integers p, s, and t with p ≥ 2 and st = 3p(p − 1), there is
always a solution:

m = 2p + s, k = 2(p − 1) + t, and n = 3p + s + t − 2. (6)

Notice that, from these expressions, it follows that for a given value of m or k (as well
as n, for which it’s obvious), there are only finitely many solutions. Also, it must be
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that m ≥ 5 and k ≥ 3 in order for a solution to exist. On the other hand, we observe that
for any given m ≥ 5, there will always be a solution (take s = 1 or 2, for example).
Of course the same holds for any k ≥ 3. So an interesting question is what can be said
about the solutions of (2) if n is fixed. The following theorem partially answers this
question. We omit the somewhat complex proof.

Theorem 2. If n2 + n + 1 �= q and n2 + n + 1 �= 3q, where q > 3 is prime, then
there are corresponding unequal k and m �= 2 satisfying (2). Otherwise the only solu-
tions are (m, m, n) and (n − 1, 2, n).

Whether or not there are infinitely many n such that n2 + n + 1 = q or n2 + n +
1 = 3q, where q > 3 is prime is unknown.

◦

Symmetry at Infinity
Richard Winton (winton@tarleton.edu) Tarleton State University, Stephenville, TX
76402

In a calculus class dealing with applications of integrals, we encountered the center
of mass/centroid problems for plane regions. Working out examples in class, we com-
puted the centroid of the region of finite area bounded by y = x2 and y = 3

√
x . At the

conclusion of the problem, Jason, a chemistry major, asked the following question.

If the two given functions had been y = x2 and y = √
x , would the centroid have

been located at the point ( 1
2 ,

1
2)?

Since the graphs of y = x2 and y = √
x intersect at the points (0, 0) and (1, 1) and are

symmetric about the line y = x , the question seems like a reasonable one. However,
rather than simply answer the question for y = x2 and y = √

x , I replied by asking
the same question concerning any pair of functions of the form y = xn and y = n

√
x ,

where n is a positive integer, since they possess the same points of intersection and
symmetry. This paper is devoted to answering that question.

Thus for each positive integer n, define fn(x) = xn and f −1
n (x) = n

√
x = x1/n. For

n = 1, f1(x) = x = f −1
1 (x), so that no area is bounded by f1(x) and f −1

1 (x). How-
ever, for n > 1, fn(x) and f −1

n (x) bound a region Rn of finite area between (0, 0) and
(1, 1). We proceed now to derive a general formula for the coordinates (xn, yn) of the
centroid Cn of Rn in terms of n (n > 1).

Since any invertible function and its inverse are symmetric about the line y = x ,
we have xn = yn . (See Figure 1.) Thus a single function of n provides the coordinates
(xn, yn) of Cn . At first glance, many students conjecture that the region Rn is also
symmetric about the line y = 1 − x . (See Figure 2.) Based on the assumption of this
additional symmetry, the students conclude that Rn must have centroid Cn(

1
2 ,

1
2) at the

intersection of y = x and y = 1 − x .
However, if f (x) ≥ g(x) for a ≤ x ≤ b and R is a plane lamina of constant density

ρ whose area is bounded by f (x) and g(x) over the interval [a, b], then the mass and
first moments of R are

µ = ρ

∫ b

a

[
f (x) − g(x)

]
dx,
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Figure 1.
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–1

1

Figure 2.

Mx = ρ

2

∫ b

a

([
f (x)

]2 − [
g(x)

]2
)

dx,

and

My = ρ

∫ b

a
x
[

f (x) − g(x)
]

dx,

respectively. Thus the centroid of R is C(x, y), where

x = My

µ
=

∫ b
a x[ f (x) − g(x)]dx∫ b
a [ f (x) − g(x)]dx

and y = Mx

µ
=

1
2

∫ b
a ([ f (x)]2 − [g(x)]2)dx∫ b

a [ f (x) − g(x)]dx
.

Since f −1
n (x) = x1/n ≥ xn = fn(x) for n > 1 and 0 ≤ x ≤ 1, then

∫ 1

0

(
x1/n − xn

)
dx = n

n + 1
· x (n+1)/n − 1

n + 1
· xn+1

∣∣∣∣
1

0

= n − 1

n + 1
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and∫ 1

0
x

(
x1/n − xn

)
dx = n

2n + 1
· x (2n+1)/n − 1

n + 2
· xn+2

∣∣∣∣
1

0

= (n + 1)(n − 1)

(n + 2)(2n + 1)
.

Thus

xn =
∫ 1

0 x( f −1
n (x) − fn(x)) dx∫ 1

0 ( f −1
n (x) − fn(x)) dx

= (n + 1)(n − 1)

(n + 2)(2n + 1)
÷ n − 1

n + 1
= n2 + 2n + 1

2n2 + 5n + 2
= yn.

Hence for n > 1,

Cn =
(

n2 + 2n + 1

2n2 + 5n + 2
,

n2 + 2n + 1

2n2 + 5n + 2

)
.

For example, the centroid of R2 is C2(
9
20 ,

9
20), while the centroid of R3 is C3(

16
35 ,

16
35).

In fact, for n > 1, Cn �= ( 1
2 ,

1
2). Upon closer inspection, the graphs of y = fn(x) and

y = f −1
n (x) reveal that Rn is somewhat wider toward the origin than the opposite end,

resulting in the centroid Cn being located nearer (0, 0) than (1, 1). Figures 3, 4, and
5 provide graphs of y = fn(x) and y = f −1

n (x) for n = 2, 7, and 30. The resulting
region Rn and centroid Cn are displayed on each plot.
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Figure 3. n = 2

As n gets large, Rn expands toward the perimeter of the square with vertices (0, 0),
(0, 1), (1, 0), and (1, 1), and Cn approaches the center of the square at the point ( 1

2 ,
1
2 ).

More specifically,

lim
n→∞ xn = lim

n→∞
n2 + 2n + 1

2n2 + 5n + 2
= 1

2
,
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Figure 4. n = 7
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Figure 5. n = 30

and so limn→∞ Cn = ( 1
2 ,

1
2 ). Hence the initial conjectures that Rn is symmetric about

the line y = 1 − x and has centroid Cn = ( 1
2 ,

1
2) are actually valid only in the limit-

ing case for C∞. In other words, relative to the line y = 1 − x , and in terms of the
parameter n, Rn finally achieves “symmetry at infinity.”

◦
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The Flip-Side of a Lagrange Multiplier Problem
Angelo Segalla (asegalla@csulb.edu) and Saleem Watson (saleem@csulb.edu), Cali-
fornia State University, Long Beach, Long Beach, California 90840

Introduction. A typical optimization problem in beginning calculus courses is the
‘fencing-a-field’ problem:

Find the dimensions of the rectangular field of maximum area for a fixed perime-
ter.

There is a natural “flip-side” to this problem:

Find the dimensions of the rectangular field of minimum perimeter for a fixed
area.

It is apparent that these problems are related, but what, exactly, is the relationship
between them? Do other optimization problems have a flip-side? If so, how does one
formulate the flip-side of a given problem?

We give an answer to these questions by considering the more general problem of
optimizing a function f of two variables subject to a constraint g(x, y) = c using La-
grange multipliers. As the fencing-a-field problem suggests, the flip-side of a problem
involves interchanging the roles of f and g (a process that is meaningful because the
Lagrange multiplier condition ∇ f = λ∇g is symmetric in f and g). In this note we
define what is meant by the flip-side of a problem and prove a result that relates an
extremum of a problem to an extremum of its flip-side. In following the steps of the
proof, students can see how properties of the gradient—in particular the property that
the gradient points in the direction of the greatest rate of increase in the values of a
function—can be useful visual tools in analyzing optimization problems.

Several articles on Lagrange multipliers have appeared in the CMJ (see for instance
[1], [2], [3], [5]), but it seems that the general relationship between a problem and its
flip-side (as we call it here) has not been discussed.

The general problem. To better see the relationship between a problem and its
flip-side, let’s solve a specific fencing-a-field problem. Suppose the amount of fencing
available is 40 units, say. Then the problem is this: Maximize A(x, y) = xy subject
to the constraint P(x, y) = 2x + 2y = 40. The answer is a square of side 10 and
area 100. The flip-side problem is about fields of area 100: Minimize P subject to the
constraint A(x, y) = 100. Again the answer is a square of side 10.

Following this example leads us to the following general situation. Suppose f and
g are functions of two variables and f has a local maximum (or minimum) value
m = f (a, b) at the point (a, b) subject to the constraint g(x, y) = c. The flip-side
problem is: Does g have a local extremum at (a, b) on the constraint f (x, y) = m?
And if so, is the extremum a local maximum or minimum?

We show that in general (under appropriate smoothness conditions on f and g) the
flip-side problem always has a local extremum at (a, b), and the type of extremum
depends on whether ∇ f and ∇g point in the same or opposite directions at (a, b).
We will say that f has a local maximum point at (a, b) on the constraint g(x, y) = c
if f (a, b) > f (x, y) for all (x, y) on the level set g(x, y) = c in some disc centered
at (a, b).
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Theorem. Suppose f and g are smooth functions of two variables, ∇ f (a, b) �= 0,
and

∇ f (a, b) = λ∇g(a, b).

Let f (a, b) = c1, g(a, b) = c2. If f has a local maximum (minimum) point at (a, b)

on the constraint g(x, y) = c2, then the following hold:

1. If λ > 0, then g(x, y) has a local minimum (maximum) at (a, b) on the constraint
f (x, y) = c1.

2. If λ < 0, then g(x, y) has a local maximum (minimum) at (a, b) on the constraint
f (x, y) = c1.

Proof. We prove the result when f has a local maximum at (a, b). Since

∇ f (a, b) �= 0 and ∇g(a, b) �= 0

the level sets f (x, y) = c1 and g(x, y) = c2 are smooth curves with nonvanishing
tangent vectors in some disc centered at (a, b) [1]. Let’s call these curves γ f and γg,
respectively, as in Figure 1(a). With this terminology, the hypothesis states that f has
a local maximum value c1 = f (a, b) on γg. So we can find a small enough disc D on
which γ f and γg are smooth curves and f (x, y) < c1 at all other points of γg inside D.

Now f (x, y) > c1 on one side of γ f and f (x, y) < c1 on the other side in D. This
is because if f (x, y) > c1 on both sides, then c1 = f (a, b) is the minimum value of f
in D, and so ∇ f (a, b) = 0, contradicting the hypothesis. Thus the intersection of the
sets

M f = {
(x, y) : f (x, y) ≥ c1

}
and L f = {

(x, y) : f (x, y) ≤ c1

}
in D is γ f as in Figure 1(a). We have used the letters M and L to indicate the sets
where f is “more than” and “less than” (or equal to) c1, respectively. Of course g has
the same properties as f , so in the same way we define Mg and Lg with respect to c2.

(a,b)

γf

γg

Lf

Mf

D

Lf
Mf

D

(a,b)

γ f

γg

 ∇f 

(a) γg is contained in L f . (b) ∇ f points into M f .

Figure 1. f is larger than c1 on one side of γ f and smaller on the other.

Since f attains its maximum value on γg at (a, b), it follows that the values of f
on γg are all less than or equal to c1, that is, γg ⊂ L f . See Figure 1(a). (This implies
that γg is on one side of γ f , so these curves do not cross in D.) Because the gradient
always points in the direction of greatest increase, it follows that ∇ f (a, b) points into
M f (Figure 1(b)).

1. If λ > 0 then ∇ f (a, b) and ∇g(a, b) point in the same direction, so we must
have M f ⊂ Mg as in Figure 2(a). In this case γ f ⊂ Mg , that is, the values of g
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(a,b)

 ∇f 

∇g

γ f

Lg γg

Mg

D

Mf
Lf

 ∇f 

∇g
(a,b)

γ f

Lg

γgMg

D

MfLf

(a) ∇ f , ∇g point in same direction. (b) ∇ f , ∇g point in opposite directions.

Figure 2. ∇g tells us on which side of γg is Mg

on γ f are all greater than or equal to c2. Thus g has the local minimum value
g(a, b) = c2 on γ f .

2. If λ < 0 then ∇ f (a, b) and ∇g(a, b) point in opposite directions. So we must
have Mg ⊂ L f as in Figure 2(b). In this case γ f ⊂ Lg, that is, the values of
g on γ f are all less than or equal to c2. Thus g has the local maximum value
g(a, b) = c2 on γ f .

Moving a river and other flip-side problems. Once a constrained optimization
problem has been solved, we can use the theorem to state and solve the flip-side prob-
lem. For an applied problem, it is interesting to consider the physical interpretation of
the flip-side. For the fencing-the-field problem we want to maximize area, for the flip-
side we want to minimize perimeter. We consider two other common first-semester
calculus problems.

The milkmaid problem [2] asks for the minimum distance a milkmaid needs to walk
from her home to fetch water from a river and take it to the barn. Specifically, suppose
her home is at (−3, 0), the barn at (3, 0), and the river is the line R(x, y) = 100, where
R(x, y) = 16x + 15y. To walk to a point (x, y) and then to the barn the maid trav-
els a distance d(x, y) = √

(x + 3)2 + y2 + √
(x − 3)2 + y2. The problem can now be

stated as follows: Minimize d subject to the constraint R(x, y) = 100. Using Lagrange
multipliers we find that λ > 0 and the minimum is d(4, 12

5 ) = 10. By our theorem the
flip-side problem is to maximize R subject to the constraint d(x, y) = 10; moreover,
the local maximum value is R(4, 12

5 ) = 100. We can interpret the flip-side problem as
follows: If the maid insists that she will walk a distance of exactly 10, then we must
move the river for her! That is, we must find the maximum value of c so that she can
just reach the river R(x, y) = c and then walk to the barn, travelling a total distance
of 10.

Another ubiquitous problem in first semester calculus courses is the ladder-around-
the-corner problem: Find the length of the longest ladder that can go around a rectan-
gular corner with hallways of fixed widths [3]. Using our theorem it is easy to state
and solve the flip-side of this problem, but what physical quantity are we actually
minimizing in the flip-side problem?

In general, every problem of the type we describe here has a flip-side. For applied
problems it is interesting to try and find meaning for the quantities being optimized in
the flip-side problem.
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Another Proof for the p-series Test
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It is well known that the p-series is 1 + 1
2p + · · · + 1

n p + · · · converges for p > 1
and diverges for p ≤ 1. In standard calculus textbooks (such as [3] and [4]), this is
usually shown using the integral test. In this note, we provide an alternative proof of
the convergence of the p-series without using the integral test. In fact, our proof is an
extension of the nice result given by Cohen and Knight [2].

We begin by giving the following estimate for the partial sum of a p-series:

Lemma. Let sn(p) be the nth partial sum of the p-series
∑∞

k=1 1/k p.

(a) For p > 0,

1 − 1

2p
+ 2

2p
sn(p) < s2n(p) < 1 + 2

2p
sn(p),

(b) For p < 0,

1 + 2

2p
sn(p) < s2n(p) < 1 − 1

2p
+ 2

2p
sn(p).

Proof. As sn(p) is the nth partial sum,

s2n(p) = 1 + 1

2p
+ 1

3p
+ · · · + 1

(2n)p

= 1 +
[

1

2p
+ 1

4p
+ · · · + 1

(2n)p

]
+

[
1

3p
+ 1

5p
+ · · · + 1

(2n − 1)p

]
.

For p > 0,

s2n(p) > 1 + 1

2p
sn(p) +

[
1

4p
+ 1

6p
+ · · · + 1

(2n)p

]
.

Thus,

s2n(p) > 1 + 1

2p
sn(p) − 1

2p
+ 1

2p
sn(p) = 1 − 1

2p
+ 2

2p
sn(p).
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Also,

s2n(p) < 1 + 1

2p
sn(p) +

[
1

2p
+ 1

4p
+ · · · + 1

(2n)p

]
= 2

2p
sn(p) + 1.

This proves (1). We can prove (2) in a similar manner.

From these estimates, we have the following test for the p-series:

Theorem. The p-series is divergent when p ≤ 1, and in this case,

lim
n→∞

s2n(p)

sn(p)
= 2

2p
. (1)

The p-series is convergent for p > 1, and in this case,

2p − 1

2p − 2
≤ lim

n→∞ sn(p) ≤ 2p

2p − 2
. (2)

Proof. When p < 0, the p-series is divergent since the general term does not con-
verge to 0. So we consider 0 < p ≤ 1. Assume that the p-series is convergent, that is,
limn→∞ sn(p) = s(p). From the lemma we obtain the following inequality by letting
n → ∞:

1 − 1

2p
+ 2

2p
s(p) = 2p − 1

2p
+ 2

2p
s(p) ≤ s(p),

and from this inequality we have

0 <
2p − 1

2p
≤ 2p − 2

2p
s(p) ≤ 0,

which is a contradiction. Thus the p-series is divergent when p ≤ 1. We obtain

lim
n→∞

s2n(p)

sn(p)
= 2

2p

by dividing both inequalities of the lemma by sn(p) and letting n → ∞. This
proves (1).

Now let p > 1. From the inequality of the first part of the lemma, we have

sn(p) < s2n(p) < 1 + 2

2p
sn(p),

and then 0 < (1 − (2/2p))sn(p) < 1. Hence, sn(p) < 2p/(2p − 2) for all n, so the
sequence {sn(p)} is bounded. Furthermore, it is increasing, so the limit limn→∞ sn(p)

exists, and hence the p-series is convergent for p > 1. The inequality is obtained by
letting n → ∞ in the first part of the lemma.

Remarks. (1) From the theorem, for p > 1, we obtain an estimate for the sum of
a p-series. For example, when p = 2, we know that
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∞∑
n=1

1

n2
= π2

6
≈ 1.65.

The theorem gives the estimate 1.5 ≤ limn→∞ sn(p) ≤ 2.
(2) The theorem also provides a way of calculating some interesting limits related

to the p-series. For example, consider the p-series
∑∞

k=1 1/k p with p = 1/3. It is
divergent and limn→∞ sn(p) = ∞. Then from the first part of the theorem, we can
calculate the limit:

lim
n→∞

1 + 1
3√2

+ · · · + 1
3√n

+ · · · + 1
3√2n

1 + 1
3√2

+ · · · + 1
3√n

= 3
√

4.

Similarly for p = 1,

lim
n→∞

1 + 1
2 + · · · + 1

2n

1 + 1
2 + · · · + 1

n

= 1.
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Taylor Series—A Matter of Life or Death

Mathematics can even be a matter of life or death. During the Russian revolution,
the mathematical physicist Igor Tamm was seized by anti-communist vigilantes
at a village near Odessa where he had gone to barter for food. They suspected he
was an anti-Ukrainian communist agitator and dragged him off to their leader.

Asked what he did for a living, he said that he was a mathematician. The scep-
tical gang-leader began to finger the bullets and grenades slung around his neck.
“All right,” he said, “calculate the error when the Taylor series approximation of
a function is truncated after n terms. Do this and you will go free; fail and you
will be shot.” Tamm slowly calculated the answer in the dust with his quivering
finger. When he had finished, the bandit cast his eye over the answer and waved
him on his way.

Tamm won the 1958 Nobel prize for Physics but he never did discover the
identity of the unusual bandit leader. But he found a sure way to concentrate his
students’ minds on the practical importance of Mathematics!

The Observer (U.K.)
16 May 1993
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