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1. A random ladder game: Another scheme that lets the gods decide. Last
year a friend and his wife Reiko told how they’d each made a list of five things
they’d like for Christmas, and then used an old scheme, which Reiko had learned
as a little girl in Japan, to make a secret choice of which one item the recipient
would receive as a gift from their spouse. It goes like this: The wife draws five
vertical sticks, labelling them as “paths” A-E at the top. The numbers 1-5 (each
secretly corresponding to one of the husband’s gift requests) are written at the
bottom of the respective paths. Then, in whatever pattern suits their fancy, they
put into the figure a bunch of “rungs” between adjacent paths, with no rung
sharing an endpoint with another rung, all of this as in Figure 1. The game
proceeds according to this rule: The husband chooses a column heading. The wife
moves down the path from the chosen point at the top; every time she encounters
a rung she must cross it, then continue downward. Thus, for example, if “C” is
chosen, she would end up at “2,” and the husband would get the gift secretly
corresponding to “2” for Christmas. The wife’s gift is chosen similarly.

For the ladder shown in Figure 1, we have tabulated in Figure 2 the gift the
husband would receive as a function of the column heading he chooses. The
elements of the set {4, B,C, D, E} have been mapped by this scheme into the set
{1,2,3,4,5}. As the defining table shows, the map is a one-to-one, onto map.
Observing this, we tried five or six different rung-path schemes—and it always
happened that each of the elements in {1,2,3,4,5} did occur as an image! Always
so? For {1,2,3,...,n}?... Reiko: “Of course. That’s why it’s used!” It’s not hard
to come up with a proof (see Section 3, below) that this ladder process does indeed
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Figure 1
The path from C leads to 2.

A——»5
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D ————»3
E—» 1

Figure 2

always yield such a one-to-one, onto map, a permutation of the set {1,2,3,...,n}
when we think of the two involved sets as being the same.

There are other uses of the scheme. One of us went on to use it (a) to distribute
four gifts randomly among four individuals at his office; and (b) to decide for his
family who was to give whom a gift at Christmas.

2. More encounters. Sometime later, a colleague, Irene Cheung, who was
raised in Hong Kong, said that she knew the scheme too. “We used it all the time
in our office there to see who had to buy a treat for everybody at lunchtime.”
Participants would each write their names at the head of some path, put in a few
rungs wherever they wished, and then let the next person do the same. Some
player then wound up with the “losing” point of the day (selected independently).
Irene said that in her experience it seemed to be in a player’s interest to choose
one of the outside paths—the ones headed 4 and E in our example—for the
losing point was usually at the bottom of some interior path, and if you started
along an outside path, it then seemed “you didn’t usually wind up in the middle so
far.” We’ll come back to this in Section 9.

The tale of yet another encounter begins in [6], where Martin Gardner begins by
discussing a three-path scheme which decides for three computer programmers
“who is to pay for the beer.” What we’ve been calling “rungs” he calls “shuttles”
—and his rules allow the shuttles to join those two outside paths. Gardner then
draws figures for, enumerates, and names the six permutations that his (n = 3)
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scheme generates, and proceeds to his principal interest for this column: introduc-
ing and discussing at some length the properties and structure of a group, in
particular here, a permutation group. He points out that the group in his example
has the very same structure as the group of transformations generated by the
rotations and reflections of an equilateral triangle.

He then discusses “braiding three strands of a girl’s hair,” and also deals briefly
with Emil Artin’s theory of braids [3]. In this theory, the elements of the group are
“weaving patterns” (infinite in number). The theory is involved in a game invented
by Denmark’s Piet Hein involving “tangled” braids, and in some theoretical
physics questions dealt with by P. A. M. Dirac [10].

3. Some theorems. To prove that our ladder process produces a one-to-one
map of a set X=1{1,2,3,...,n} onto itself, let there be a finite number n of paths,
and a finite number r of rungs, with no rung sharing an endpoint with another
rung—all as in Figure 1, where n = 5. Now, assign one “marcher” to each of the n
paths, and let them all start together and proceed abreast down their respective
paths. Each time a rung is encountered, they pause while the two marchers who
encountered the ends of that rung exchange paths. Then all start up again. There
is always exactly one marcher per path, so each of the path-ends is reached by one
and only one marcher. Thus, the map is indeed one-to-one and onto; a permuta-
tion of X.

Question: Does the process produce all possible permutations of X ? If it does,
then, among other things, we have the immediate corollary that any permutation of
a set X of n elements is a composition of transpositions (of pairs of neighboring
elements).

One way to prove that all permutations are generated by .a ladder depends on
this

Lemma. By the insertion of certain rungs, any pair can by switched without
disturbing the others.

The key idea, which involves what we’ll call a transposition wedge, is illustrated in
Figure 3, where x and y get switched without disturbing the others. Such
transposition wedges can be inserted to switch two elements as we please. This
yields an obvious inductive proof of the result we want: if any particular permuta-
tion is specified, a wedge can move into the first spot whatever element you
specify, and so on.

Here is a somewhat quicker proof of the fact that a ladder always yields a
permutation of a set X of n elements. Let f be the function that a given ladder

Figure 3
x and y get switched.
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defines when it assigns to each of the elements in the domain (at the top) a definite
element in the receiving set of n elements below. The rule of the game determines
completely and unambiguously the way you come down the ladder to make that
assignment. There is also only one way you can start at any given element below
and climb up to the top, where you’ll land on an element there. The ladder not
only defines f, it also defines its inverse. This tells us that f must be one-to-one;
that f(X) consists of n distinct images; that all n points at the bottom of the.
ladder are in the game; and thus that f is indeed onto.

4. Markov chain models for a random ladder game. The Hong Kong office
experiences reported in Section 2, lead to a doubt about the “fairness” of the
ladder in producing a random permutation. To address the issue of fairness, we
present two Markov chain models: Model One views the ladder as a random walk
through the set of all permutations of a group of elements; Model Two considers
the path of a single “marcher” (in the context of Section 3, above) as a random
walk among the columns of the ladder. (Introductions to Markov chains abound;
e.g., see [2]. For a more extensive treatment, see [7] and [11].)

5. Model One: A random walk about the set of all permutations of a set of n
elements. Here, we define a Markov chain that changes states each time a rung
is passed. The “state” of the process after the kth transition is the ordering of the
n elements after passing the kth rung. To define this process formally, let
{SCk), k=0,1,2,...,r} be a stochastic process [11, p. 73] where S(k) gives the
state of the process after the kth rung has been passed. The state space for this
process is the set of all possible permutations of n elements. Thus, there are n!
elements in the state space. Figure 4 illustrates how each rung of the ladder given
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in Figure 1 changes the state of the process by transposing two neighboring
elements.

We will assume the process begins with S(0) = s,, the initial ordering 123...n.
The remaining elements of the state space will be labelled arbitrarily as s,
i=1,2,...,n—1.

With the following assumptions, the process {S(k), k=0,1,2,...} is a Markov
chain:

(1) Assume that each time a rung is added to the ladder, it will be placed
between the ith and (i + Dth columns with probability p,, where p,>0 for
i=1,2,...,n—1 (so that the process is said to be “irreducible” [11, p. 142]—that
is, it is possible to move from any state to any other state with appropriate rung
placement) and X/ |'p, = 1.

(2) Assume the rungs are placed independently.

Examples. When n = 2, there is only one possible position in which rungs may be
placed. This process may be thought of as a walk back and forth between the two
possible orderings “12” and “21.” The transition matrix is

10 1
P“[l 0]’

where the (i, j) entry is the probability of moving from state S; to state S ; after the
next rung. The transition diagram for the process is shown in Figure 5.

1
Sy |——| 5

(12) | «——| (21)
1

Figure 5

When n = 3, the transition diagram and transition matrix are shown in Figure 6.
As the diagram shows, the #n = 3 model may be thought of as a random walk about
the nodes of a hexagon.

Py 5y 112_’ S2 | P1
/ @13)| " p,|@23D
D, Py
Sy S3
(123) (321)
Pz\ /Pz
S5 |P1 [ s,
.13 ¥ 7,612 p,
[0 p, 0 0 0 p,]
py, 0 p, 0 0 O
0 p, 0 p, 0 0
P=lo 0 p 0 p, 0
0 0 0 p, 0 p
p, 0 0 0 p O
Figure 6
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Figure 7

When n = 4, the model may be thought of as a random walk about the nodes of
a truncated octahedron [12], an Archimedian solid consisting of 8 hexagonal faces
and 4 square faces (see Figure 7). 7

Notice that our transition matrix is stochastic: i.e., a square matrix with nonneg-
ative entries such that the sum of the entries in each row is 1; its rows are
probability vectors. In fact, since it is symmetric, it is doubly stochastic: its columns
are also probability vectors [4, p. 48]. Crucial to the analysis of this process as a
Markov chain is the fact that for any choice of n, the transition matrix is symmetric,
thus doubly stochastic. We forego the easy proof that our transition matrices are
symmetric; it depends on the fact that the only permutations that have a nonzero
probability of being applied at any given step are those that transpose adjacent
elements—and such permutations are their own inverses.

For a random ladder game, the transition matrix is easily seen to be doubly
stochastic because it is symmetric. Feller makes the point in [5, p. 406] that any
shuffling scheme yields a doubly stochastic transition matrix (even if it is not
symmetric, as it is here). Since our ladder is a shuffling scheme, we don’t really
need to know that the transition matrix is symmetric in order to know that it is
doubly stochastic. Still, the fact that it is symmetric is useful, for it tells us, thanks
to an old theorem [9, p. 294], that its eigenvalues are all real. (See Section 8,
below.)

6. Limiting probabilities. Let 7, be the row vector defined by

Pr[S(k) =so]
| else) =)

Pr[S(k) - Seni- 1)]

The vector , gives for each state the probability that the process will be in that
state after passing over k rungs. By assumption, w,=[1 0 0O --- 0]. This is
the initial distribution vector, which places probability 1 on the event “the process
begins in state s,.” For n = 3, using once more the designations in Figure 6, above,
m,=[0 p, 0 0 O p,]. This says that after one rung is passed, the process
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will be in state s; with probability p, (if the rung was between the first and second
columns) or in state s5 with probability p, (if the rung was between the second and
third columns).

It can be shown that in general,

- k
T =moP",

where P is the transition matrix for the process [2, p. 589; 11, p. 139]. This provides
a way of computing for each permutation the probability that it will be the result
after k rungs have been passed. It is clear that each permutation is not equally
likely after a small number of rungs. (For an easy example, the fact that 7, =
[0 p, 0 0 0 p,]when n=23is proof that all outcomes are not equally likely
when n=3and k=1.)

Let us now consider , = lim, _,, 7,. Notice that

Ty =7 P =7 PP =7, P.
Letting k go to infinity yields
Ty = Mo, P.

Thus, if this limit exists, it may be found by solving the linear system 7 = 7P for
7 =,. This linear system does not have a unique solution, however, since any
scalar multiple of 7, will also satisfy the system. Therefore, we need the added
condition that the components of 7, sum to one, so that it is truly a probability
vector. It can be shown [11, p. 151] that for irreducible Markov chains (such as our
ladder), there is a unique solution to 7 = 7P with components summing to one. If
the limit 7, exists, it must be this unique solution.

For a random ladder game, the solution to 7 = 7P with components summing to
one is m, = (1/n)u, where u is a row vector of ones. This fact may be proven as
follows: Since the transition matrix is doubly stochastic, the elements of each
column sum to one. This is equivalent to the matrix expression uP = u. The vector
u is multiplied by 1/#n! so that its elements sum to one. Since each component of
., is the same, we conclude that each ordering is equally likely as an outcome of the
ladder in the limit as the number of rungs tends to infinity.

We remind ourselves that the existence of , as the limit of 7,’s has not been
proven yet. As a matter of fact, lim, _,_ 7, does not exist because the process is
periodic. As k tends to infinity, the sequence of 7,’s approaches a two-cycle. That
is, it approaches back-and-forth oscillation between two vectors we might call 7.,
and 44, Where the ith component of ., is 2/n! if s; is an even permutation, 0
if 5, is an odd permutation; and the ith component of 4 is 2/n! if s; is an odd
permutation, 0 if s; is an even permutation. This fact is illustrated with the
computed values of 7, given in Figure 8, which gives the values of 7, when there
are three vertical columns and O through 10 horizontal rungs. This table also
illustrates the fact that it is not necessary to assume that the rungs are placed
uniformly on the ladder, that is, we are not assumingp,=1/(n—1) for i=
1,2,...,n — 1. We need only assume that these probabilities are positive and that
the placements of the rungs are independent.

The statement “each ordering is equally likely as an outcome of the ladder in
the limit as the number of rungs tends to infinity” still has validity for a random
ladder game despite the periodicity of the process. We simply must interpret the
statement in the following sense: The components of m,=(1/rDu give the
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If p,=p,=1.then
7= 1 0 0 0 0 0)
==l 0 0.5 0 0 0 0.5)
ma={ 05 0 0.25 0 0.25 0]
my=| 0 0.375 0 0.25 0 0.375]
my=1[ 0.375 0 03125 0 03125 0)
7= 0 0.3438 0 03125 0 0.3438)
o = [0.3438 0 0.3281 0 0.3281 0]
= 0 0.3359 0 0.328] 0 0.3359)
e =10.3359 0 0.3320 0 03320 0]
Ty = 0 0.3340 0 0.3320 0 0.3340]
T = [0.3340 0 0.3330 0 0.3330 0]
It p, = L. then py =3, and
= 0 0 0 0 0]
m =L 0 0.25 0 0 0 0.75]
7. =[ 0.625 0 0.1875 0 0.1875 0}
7y =1 0 0.2969 0 0.1875 0 0.5156]
7y = [0.4609 0 0.2095 0 0.2695 0]
7= 0 03174 0 0.2695 0 04131]
= [0.3892 0 0.3054 0 03054 0]
7, =] 0 0.3264 0 0.3054 0 0.3682]
7y =[0.3578 0 0321 0 03211 0]
7y = 003303 0 03211 0 0.3486]
70 = 103440 0 0.3280 0 0.3280 0)
Figure 8

long-run proportion of time that the process is in each state or the probability the
outcome will be a particular state when the number of rungs is large and it is not
known whether the number of rungs is even or odd.

The fact that each outcome becomes equally likely in the limit as k goes to
infinity (see those bottom rows for 7, and 7, in Figure 8) should not be too
surprising. Imagine shuffling a deck of cards that was given to you with all cards
initially in some particular order. Suppose you ‘“shuffle” the deck by repeatedly
selecting two adjacent cards at random and swapping their positions. Is it surpris-
ing that the deck becomes thoroughly shuffled after this process is applied for an
indefinitely long time? This scheme is not the most efficient way to shuffle a deck,
but after an indefinitely long time, the deck would get quite thoroughly shuffled.

Perhaps it is surprising that the outcomes become equally likely in the limit even
when the rungs are not distributed uniformly throughout the ladder. Suppose for
example that there is a very small probability that any given rung will appear
between the first two columns. As long as there is a positive probability that a rung
will appear there, eventually (after a sufficiently large number of rungs have been
placed) a rung will appear there. As a matter of fact, eventually an arbitrarily large
number of rungs will appear between the first two columns.

7. Model Two: The path of a single marcher as a random walk among the
columns of the ladder. In Model One, above, we tracked all paths down the
ladder simultaneously. The problem with that model is that the transition matrix is
huge: n!X n!. This makes the model very hard to work with computationally. For
large values of # it is a difficult task even to write down the transition matrix.
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Furthermore, finding its eigenvalues and evaluating its powers (of interest to us in
Section 8, below) are even more difficult!

Model Two will trace the path of a single marcher moving down the ladder. The
question considered here is: “Will a marcher beginning at the top of the ladder in
column j be equally likely to end up in any of the #» columns at the bottom of the
ladder?” From the previous analysis, one could construct an argument to give the
answer “virtually yes, if there is a sufficiently large number of rungs in the ladder.”
This second model will give the same result and provide a much simpler way to
analyze the process.

Consider again a ladder with n vertical columns and r rungs. Let
{T(k), k=0,1,2,...,r} be a stochastic process where T(k) gives the position
(column number) of the marcher after the kth rung has been passed. The state
space for this process is the set of all columns. Thus, there are only n elements in
the state space. Again let p; be the probability that any given rung lies between the
ith and (i + Dth columns where p;>0 for i=1,2,...,n—1 and £7~'p,=1 and
assume independence of the rung placements. Then this process is a Markov chain
with just n states.

Each time the marcher passes a rung in the ladder, he will change positions to
an adjacent column if the rung touches his column or he will remain in the same
column if the rung does not touch his column. This model is essentially a random
walk among the columns of the ladder. The transition diagram for this model and
its transition matrix—an »n X » tridiagonal matrix—are given in Figure 9.

p] p2 p3 pn 1

@ ® ® ooo
l=py 1=p;—=p, 1-p,—p; 1=p,
[1-p, P 0 0 0 ]
P l=p,—p, Py 0 0
0 Dy 1-p2—p3 b3
P=
0 0 D5 0
Py
i 0 0 0 p,_, 1 p,,_]_
Figure 9

This transition matrix is also symmetric, thus doubly stochastic for all n. It
follows that the limiting probabilities are all 1/n just as expected. Regardless of
where the marcher begins, he is equally likely (almost) to end up in any of the n
columns at the bottom after a sufficiently large number of rungs has been passed.
Unlike the first model, this process is not periodic for n > 2 since it is possible for
the marcher not to change states when a rung is passed.

8. How many rungs is enough? Under each of the models given above, the
transition matrix for the Markov chain is symmetric, thus doubly stochastic. This

VOL. 23, NO. 5, NOVEMBER 1992 381



leads to the conclusion that each outcome becomes equally likely as the number of
rungs grows to infinity. The natural question that arises at this point is: “How
many rungs are needed in the ladder before each outcome is sufficiently equally
likely?” Of course, “sufficiently equally likely” is subjective. What we are inter-
ested in is a way to determine how quickly k-step transition probabilities approach
the limiting probabilities. This information lies in the eigenvalues of the transition
matrix P. This analysis can be applied to either of our two models.

To deal with the powers of the matrix P, we need a few results about matrices:
For any stochastic matrix P, 1 is an eigenvalue, and all of its eigenvalues are
contained in the closed unit circle in the complex plane [4, p. 49; 8, p. 547]. The
eigenvalues of symmetric matrices are always real [9, p. 294], so the eigenvalues of
our transition matrices are real and lie in the interval [—1,1]. By the small
eigenvalues of P we mean the eigenvalues of P whose absolute values are strictly
less than 1. (This excludes 1 and —1.) By the largest small eigenvalue of P we mean
the small eigenvalue having greatest absolute value. Another property of symmet-
ric matrices that we shall use is the fact that there exists an orthogonal matrix Q
such that P = QDQ7, where the eigenvalues of P are the diagonal entries of the
matrix D and all off-diagonal entries are zero [9, p. 297]. We can then more easily
examine the powers of P by looking at the simpler powers of the diagonal matrix
D, since then P*=QD*Q’, which follows from the fact that, for orthogonal
matrices, Q7 =Q™! [9, p. 230]. The powers of D are simply diagonal matrices
containing powers of the eigenvalues of P. The powers of the small eigenvalues will
tend to zero as k goes to infinity. How rapidly the sequence of ,’s approaches the
limiting case depends on how rapidly the powers of the small eigenvalues approach
zero. Thus, the sequence will converge quickly when the largest small eigenvalue is
close to zero. On the other hand, if there are small eigenvalues whose absolute
values are close to one, the rate of convergence could be very slow.

Example. When n = 3, the eigenvalues of the transition matrix in each case are
not hard to find. In each model, the characteristic polynomial det{P — AI} factors
into the product of simple linear factors (corresponding to the roots 1 and perhaps
—1) and quadratic factors. The quadratic formula can then be used to determine
the remaining roots. These eigenvalues give insight into how quickly the outcomes
become equally likely.

Under the first model, the transition matrix is given in Section 5, above. The

eigenvalues of the transition matrix are 1, —1, \/ p?—p,p,+p3 (multiplicity 2),
and — \/ pi—p,p,+p3 (multiplicity 2). The absolute value of the largest small
eigenvalue is \/ pi—p,p,+p3 which is minimized when p,=p, = 3. The mini-
mum value is then 3. We may conclude that when n =3 and rung placement is
uniform, the sequence {m;, k=0,1,2,...} converges to the two-cycle at roughly
the same rate that the powers of % converge to zero. We suspect (but have not
shown) that for any n, the rate of convergence is maximized when rung placement
is uniform. That is, the absolute value of the largest small eigenvalue is minimized
when p,=1/(n—Dfori=1,2,...,n— 1.
Under the second model, the transition matrix is

p, pp O
P=|p; 0 p,
0 P, D
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with eigenvalues 1, y/p? —p,p, +p3, and — \/pf —p,p, +p3. These are the same
as the eigenvalues of the transition matrix when n = 3 under the first model except
that in the first model, the multiplicities of the small eigenvalues were doubled and
—1 was an eigenvalue. Could it be that something like this holds true for all n, so
that the absolute values of the eigenvalues of the transition matrix under the first
model are always the same as the absolute values of the eigenvalues of the
transition matrix under the second model?

9. The best-case scenario. The conjecture was made in Section 8, above, that
the rate of convergence to the limiting case is maximized when rung placement is
uniform, ie., p;=1/(n—1) for all i. Assuming this conjecture is true, let us
consider the rates of convergence under this best-case scenario for several differ-
ent values of n. Figure 10 gives the value of the largest small eigenvalue e, for
n=3,4,...,10 when the transition matrix is defined according to the second
model. It can be seen that even in the best case, the largest small eigenvalue can
be very close to one for large values of n. As a matter of fact, all of the
eigenvalues approach the value 1 as n gets large. This occurs because the
off-diagonal elements of the transition matrix P tend to zero, so the transition
matrix approaches the identity matrix as n gets large. (Just see Figure 9 and
remember that p; =1/(n — 1) here.) This means that even when rung placement is
uniform, the convergence rate can be very slow. Figure 10 also gives the smallest
integer r, so that e/» < 0.1. This gives a rough indication of how many rungs are

n -

needed to “kill off”” the largest small eigenvalue.

n=3 e, =05 r,=4
n=4 e, = 0.804739 r,=11
n=>5 e, = 0.904508 r,=23
n==56 e, = 0.946410 r,=42
n=7 e,, = 0.966990 r, =69
n=3,8 e, = 0.978251 r, =105
n=9 e, =0.984923 r,=152
n=10 e, = 0.989124 r, =211
Figure 10

Example. Consider the example in Section 2, above. Suppose six people use a
ladder to determine who will have to buy everyone a treat at lunch. We look
quickly at two cases: in the first case, we suppose that each of these six people
places three rungs on the ladder at random, with rung placement uniform; in the
second case, each participant places seven rungs. See Figure 11 which shows, for
Model Two, the matrix P and both the 18-step and 42-step transition matrices. The
ijth element of P'® gives the probability that a marcher beginning in column i will
end up in column j after 18 rungs have been passed. It can be seen that if the
marcher begins at one of the outside paths of the ladder, he will end up at the
same position with probability 0.2866. Irene’s comment (Section 2, above) that if
you start on one of the outside paths, you don’t end up in the middle so far is
supported by this computation! For n = 6, 18 rungs are probably not sufficient to
make the outcomes equally likely by most people’s standards. On the other hand, if
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¢ 10 0 0 0
s 8 5 000
b0 8 3 H 00
00 + 2 1 0
00 0 5 3 3
|00 00 + %
[0.2866  0.2511  0.1931 0.1313 0.08221 0.05576
0.2511  0.2285  0.1893 0.1440 0.1048  0.08221
pis_ | 01931 01893  0.1795 0.1629 0.1440  0.1313
0.1313  0.1440 0.1629 0.1795 0.1893  0.1931
0.08221 0.1048  0.1440 0.1893 0.2285  0.2511
| 0.05576  0.08221 0.1313 0.1931 0.2511  0.2866
[0.1975 0.1892 0.1749 0.1584 0.1441 0.1359
0.1892 0.1832 0.1727 0.1606 0.1502 0.1441
paz_ | 01749 0.1727 0.1689 0.1645 0.1606 0.1584
0.1584 0.1606 0.1645 0.1689 0.1727 0.1749
0.1441 0.1502 0.1606 0.1727 0.1832 0.1892
[ 0.1359  0.1441 0.1584 0.1749 0.1892 0.1975

Figure 11

each of the six participants were to place seven rungs on the ladder, the probabili-
ties of the outcomes would be given by P*2. Now the outcomes are pretty close to
being equally likely. The problem, however, is this: after placing so many rungs on
the ladder, it’s a tedious task to trace the paths down!

The results prompted by Irene’s comment led us to look at what happens if the
ladder scheme is drawn on a cylinder, thus allowing easy transitions between the
first and last columns. Suffice it to say that in this model, convergence rates were
made faster, but as the number of columns increases, this effect diminishes.

10. Conclusion. A ladder shuffles the elements in a set, and as the number of
rungs tends to infinity, the process does become fair: all the outcomes are equally
likely. But to come close to that situation may require a number of rungs too large
to be practical. Readers interested in other types of shuffling processes may wish to
see [5, p. 406] and [1].

The ladder does provide a motivational setting for the pursuit by mathematics
students of some of the important theorems of linear algebra. As for its usefulness
in producing a random permutation or a random selection: Some people will surely
go on yielding to the intriguing appeal of a random ladder. Others may prefer a
more familiar method: drawing from a hat.
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The Half-Angle Formula for Cotangent

t/2

t t/2
B C D

ABCD is constructed so that AB 1L BC, AC=CD, and AB = 1. Then
m(<CAD) =m(<CDA) =1/2m(¥X ACB) =t/2,
cot(t/2) =BC+ CD =BC + AC

=cott+ V1 +cot?t.

While this construction is not new (see references), it is simple and
efficient. This efficiency is not surprising since the compass construction of
CD is a construction of the Carlyle circle through D.
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